Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Changing the default volume size to 30 #3792

Merged
merged 1 commit into from
May 20, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,7 @@ def create_parser():
'ml.m5.12xlarge', 'ml.m5.24xlarge', 'ml.c4.xlarge', 'ml.c4.2xlarge', 'ml.c4.4xlarge', 'ml.c4.8xlarge', 'ml.p2.xlarge', 'ml.p2.8xlarge', 'ml.p2.16xlarge', 'ml.p3.2xlarge', 'ml.p3.8xlarge', 'ml.p3.16xlarge',
'ml.c5.xlarge', 'ml.c5.2xlarge', 'ml.c5.4xlarge', 'ml.c5.9xlarge', 'ml.c5.18xlarge'], type=str, required=False, help='The ML compute instance type.', default='ml.m4.xlarge')
parser.add_argument('--instance_count', type=int, required=False, help='The number of ML compute instances to use in each training job.', default=1)
parser.add_argument('--volume_size', type=int, required=False, help='The size of the ML storage volume that you want to provision.', default=1)
parser.add_argument('--volume_size', type=int, required=False, help='The size of the ML storage volume that you want to provision.', default=30)
parser.add_argument('--max_num_jobs', type=int, required=True, help='The maximum number of training jobs that a hyperparameter tuning job can launch.')
parser.add_argument('--max_parallel_jobs', type=int, required=True, help='The maximum number of concurrent training jobs that a hyperparameter tuning job can launch.')
parser.add_argument('--max_run_time', type=int, required=False, help='The maximum run time in seconds per training job.', default=86400)
Expand Down
2 changes: 1 addition & 1 deletion components/aws/sagemaker/train/src/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@ def create_parser():
'ml.m5.12xlarge', 'ml.m5.24xlarge', 'ml.c4.xlarge', 'ml.c4.2xlarge', 'ml.c4.4xlarge', 'ml.c4.8xlarge', 'ml.p2.xlarge', 'ml.p2.8xlarge', 'ml.p2.16xlarge', 'ml.p3.2xlarge', 'ml.p3.8xlarge', 'ml.p3.16xlarge',
'ml.c5.xlarge', 'ml.c5.2xlarge', 'ml.c5.4xlarge', 'ml.c5.9xlarge', 'ml.c5.18xlarge'], type=str, help='The ML compute instance type.', default='ml.m4.xlarge')
parser.add_argument('--instance_count', required=True, type=int, help='The registry path of the Docker image that contains the training algorithm.', default=1)
parser.add_argument('--volume_size', type=int, required=True, help='The size of the ML storage volume that you want to provision.', default=1)
parser.add_argument('--volume_size', type=int, required=True, help='The size of the ML storage volume that you want to provision.', default=30)
parser.add_argument('--resource_encryption_key', type=str, required=False, help='The AWS KMS key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s).', default='')
parser.add_argument('--max_run_time', type=int, required=True, help='The maximum run time in seconds for the training job.', default=86400)
parser.add_argument('--model_artifact_path', type=str, required=True, help='Identifies the S3 path where you want Amazon SageMaker to store the model artifacts.')
Expand Down