Skip to content

Commit

Permalink
Merge pull request #308 from AI-Casanova/min-SNR
Browse files Browse the repository at this point in the history
Efficient Diffusion Training via Min-SNR Weighting Strategy
  • Loading branch information
kohya-ss authored Mar 26, 2023
2 parents 4f42f75 + 6732df9 commit a18558d
Show file tree
Hide file tree
Showing 6 changed files with 46 additions and 5 deletions.
8 changes: 7 additions & 1 deletion fine_tune.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,8 @@
ConfigSanitizer,
BlueprintGenerator,
)

import library.custom_train_functions as custom_train_functions
from library.custom_train_functions import apply_snr_weight

def train(args):
train_util.verify_training_args(args)
Expand Down Expand Up @@ -309,6 +310,9 @@ def fn_recursive_set_mem_eff(module: torch.nn.Module):

loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="mean")

if args.min_snr_gamma:
loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma)

accelerator.backward(loss)
if accelerator.sync_gradients and args.max_grad_norm != 0.0:
params_to_clip = []
Expand Down Expand Up @@ -401,6 +405,8 @@ def setup_parser() -> argparse.ArgumentParser:
train_util.add_sd_saving_arguments(parser)
train_util.add_optimizer_arguments(parser)
config_util.add_config_arguments(parser)
custom_train_functions.add_custom_train_arguments(parser)


parser.add_argument("--diffusers_xformers", action="store_true", help="use xformers by diffusers / Diffusersでxformersを使用する")
parser.add_argument("--train_text_encoder", action="store_true", help="train text encoder / text encoderも学習する")
Expand Down
18 changes: 18 additions & 0 deletions library/custom_train_functions.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
import torch
import argparse

def apply_snr_weight(loss, timesteps, noise_scheduler, gamma):
alphas_cumprod = noise_scheduler.alphas_cumprod
sqrt_alphas_cumprod = torch.sqrt(alphas_cumprod)
sqrt_one_minus_alphas_cumprod = torch.sqrt(1.0 - alphas_cumprod)
alpha = sqrt_alphas_cumprod
sigma = sqrt_one_minus_alphas_cumprod
all_snr = (alpha / sigma) ** 2
snr = torch.stack([all_snr[t] for t in timesteps])
gamma_over_snr = torch.div(torch.ones_like(snr)*gamma,snr)
snr_weight = torch.minimum(gamma_over_snr,torch.ones_like(gamma_over_snr)).float() #from paper
loss = loss * snr_weight
return loss

def add_custom_train_arguments(parser: argparse.ArgumentParser):
parser.add_argument("--min_snr_gamma", type=float, default=None, help="gamma for reducing the weight of high loss timesteps. Lower numbers have stronger effect. 5 is recommended by paper.")
2 changes: 1 addition & 1 deletion library/train_util.py
Original file line number Diff line number Diff line change
Expand Up @@ -2001,7 +2001,7 @@ def add_training_arguments(parser: argparse.ArgumentParser, support_dreambooth:
parser.add_argument(
"--prior_loss_weight", type=float, default=1.0, help="loss weight for regularization images / 正則化画像のlossの重み"
)


def verify_training_args(args: argparse.Namespace):
if args.v_parameterization and not args.v2:
Expand Down
8 changes: 7 additions & 1 deletion train_db.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,8 @@
ConfigSanitizer,
BlueprintGenerator,
)

import library.custom_train_functions as custom_train_functions
from library.custom_train_functions import apply_snr_weight

def train(args):
train_util.verify_training_args(args)
Expand Down Expand Up @@ -296,6 +297,10 @@ def train(args):
loss_weights = batch["loss_weights"] # 各sampleごとのweight
loss = loss * loss_weights

if args.min_snr_gamma:
loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma)


loss = loss.mean() # 平均なのでbatch_sizeで割る必要なし

accelerator.backward(loss)
Expand Down Expand Up @@ -395,6 +400,7 @@ def setup_parser() -> argparse.ArgumentParser:
train_util.add_sd_saving_arguments(parser)
train_util.add_optimizer_arguments(parser)
config_util.add_config_arguments(parser)
custom_train_functions.add_custom_train_arguments(parser)

parser.add_argument(
"--no_token_padding",
Expand Down
9 changes: 7 additions & 2 deletions train_network.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,9 @@
ConfigSanitizer,
BlueprintGenerator,
)
import library.custom_train_functions as custom_train_functions
from library.custom_train_functions import apply_snr_weight


# TODO 他のスクリプトと共通化する
def generate_step_logs(args: argparse.Namespace, current_loss, avr_loss, lr_scheduler):
Expand Down Expand Up @@ -492,7 +495,6 @@ def train(args):
noise_scheduler = DDPMScheduler(
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, clip_sample=False
)

if accelerator.is_main_process:
accelerator.init_trackers("network_train")

Expand Down Expand Up @@ -534,7 +536,6 @@ def train(args):
# Sample a random timestep for each image
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (b_size,), device=latents.device)
timesteps = timesteps.long()

# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
Expand All @@ -554,6 +555,9 @@ def train(args):

loss_weights = batch["loss_weights"] # 各sampleごとのweight
loss = loss * loss_weights

if args.min_snr_gamma:
loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma)

loss = loss.mean() # 平均なのでbatch_sizeで割る必要なし

Expand Down Expand Up @@ -658,6 +662,7 @@ def setup_parser() -> argparse.ArgumentParser:
train_util.add_training_arguments(parser, True)
train_util.add_optimizer_arguments(parser)
config_util.add_config_arguments(parser)
custom_train_functions.add_custom_train_arguments(parser)

parser.add_argument("--no_metadata", action="store_true", help="do not save metadata in output model / メタデータを出力先モデルに保存しない")
parser.add_argument(
Expand Down
6 changes: 6 additions & 0 deletions train_textual_inversion.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,8 @@
ConfigSanitizer,
BlueprintGenerator,
)
import library.custom_train_functions as custom_train_functions
from library.custom_train_functions import apply_snr_weight

imagenet_templates_small = [
"a photo of a {}",
Expand Down Expand Up @@ -383,6 +385,9 @@ def train(args):

loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="none")
loss = loss.mean([1, 2, 3])

if args.min_snr_gamma:
loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma)

loss_weights = batch["loss_weights"] # 各sampleごとのweight
loss = loss * loss_weights
Expand Down Expand Up @@ -540,6 +545,7 @@ def setup_parser() -> argparse.ArgumentParser:
train_util.add_training_arguments(parser, True)
train_util.add_optimizer_arguments(parser)
config_util.add_config_arguments(parser)
custom_train_functions.add_custom_train_arguments(parser)

parser.add_argument(
"--save_model_as",
Expand Down

0 comments on commit a18558d

Please sign in to comment.