Skip to content

Commit

Permalink
Deployed 021f1bb with MkDocs version: 1.5.2
Browse files Browse the repository at this point in the history
  • Loading branch information
koaning committed Jan 21, 2025
1 parent ded331c commit bf0dd4e
Show file tree
Hide file tree
Showing 14 changed files with 1,058 additions and 1,259 deletions.
4 changes: 2 additions & 2 deletions 404.html
Original file line number Diff line number Diff line change
Expand Up @@ -146,7 +146,7 @@


<li class="md-tabs__item">
<a href="/finetuners/" class="md-tabs__link">
<a href="/finetuners.md" class="md-tabs__link">
Finetuners
</a>
</li>
Expand Down Expand Up @@ -254,7 +254,7 @@


<li class="md-nav__item">
<a href="/finetuners/" class="md-nav__link">
<a href="/finetuners.md" class="md-nav__link">
Finetuners
</a>
</li>
Expand Down
337 changes: 305 additions & 32 deletions API/external/index.html

Large diffs are not rendered by default.

122 changes: 76 additions & 46 deletions API/finetune/index.html

Large diffs are not rendered by default.

32 changes: 16 additions & 16 deletions API/grab/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -151,7 +151,7 @@


<li class="md-tabs__item">
<a href="../../finetuners/" class="md-tabs__link">
<a href="../../finetuners.md" class="md-tabs__link">
Finetuners
</a>
</li>
Expand Down Expand Up @@ -259,7 +259,7 @@


<li class="md-nav__item">
<a href="../../finetuners/" class="md-nav__link">
<a href="../../finetuners.md" class="md-nav__link">
Finetuners
</a>
</li>
Expand Down Expand Up @@ -483,8 +483,8 @@ <h2 id="columngrabber">ColumnGrabber</h2>
</table>
<p><strong>Usage</strong></p>
<p>In essense, the <code>ColumnGrabber</code> really just selects a single column.</p>
<div class="highlight"><pre><span></span><code><span class="kn">import</span> <span class="nn">pandas</span> <span class="k">as</span> <span class="nn">pd</span>
<span class="kn">from</span> <span class="nn">embetter.grab</span> <span class="kn">import</span> <span class="n">ColumnGrabber</span>
<div class="highlight"><pre><span></span><code><span class="kn">import</span><span class="w"> </span><span class="nn">pandas</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pd</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">embetter.grab</span><span class="w"> </span><span class="kn">import</span> <span class="n">ColumnGrabber</span>

<span class="c1"># Let&#39;s say we start we start with a csv file with filepaths</span>
<span class="n">data</span> <span class="o">=</span> <span class="p">{</span><span class="s2">&quot;filepaths&quot;</span><span class="p">:</span> <span class="p">[</span><span class="s2">&quot;tests/data/thiscatdoesnotexist.jpeg&quot;</span><span class="p">]}</span>
Expand All @@ -494,11 +494,11 @@ <h2 id="columngrabber">ColumnGrabber</h2>
<span class="n">ColumnGrabber</span><span class="p">(</span><span class="s2">&quot;filepaths&quot;</span><span class="p">)</span><span class="o">.</span><span class="n">fit_transform</span><span class="p">(</span><span class="n">df</span><span class="p">)</span>
</code></pre></div>
<p>But the most common way to use the <code>ColumnGrabber</code> is part of a pipeline.</p>
<div class="highlight"><pre><span></span><code><span class="kn">import</span> <span class="nn">pandas</span> <span class="k">as</span> <span class="nn">pd</span>
<span class="kn">from</span> <span class="nn">sklearn.pipeline</span> <span class="kn">import</span> <span class="n">make_pipeline</span>
<div class="highlight"><pre><span></span><code><span class="kn">import</span><span class="w"> </span><span class="nn">pandas</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pd</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">sklearn.pipeline</span><span class="w"> </span><span class="kn">import</span> <span class="n">make_pipeline</span>

<span class="kn">from</span> <span class="nn">embetter.grab</span> <span class="kn">import</span> <span class="n">ColumnGrabber</span>
<span class="kn">from</span> <span class="nn">embetter.vision</span> <span class="kn">import</span> <span class="n">ImageLoader</span><span class="p">,</span> <span class="n">ColorHistogramEncoder</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">embetter.grab</span><span class="w"> </span><span class="kn">import</span> <span class="n">ColumnGrabber</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">embetter.vision</span><span class="w"> </span><span class="kn">import</span> <span class="n">ImageLoader</span><span class="p">,</span> <span class="n">ColorHistogramEncoder</span>

<span class="c1"># Let&#39;s say we start we start with a csv file with filepaths</span>
<span class="n">data</span> <span class="o">=</span> <span class="p">{</span><span class="s2">&quot;filepaths&quot;</span><span class="p">:</span> <span class="p">[</span><span class="s2">&quot;tests/data/thiscatdoesnotexist.jpeg&quot;</span><span class="p">]}</span>
Expand Down Expand Up @@ -583,7 +583,7 @@ <h2 id="columngrabber">ColumnGrabber</h2>
<span class="normal">64</span>
<span class="normal">65</span>
<span class="normal">66</span>
<span class="normal">67</span></pre></div></td><td class="code"><div><pre><span></span><code><span class="k">class</span> <span class="nc">ColumnGrabber</span><span class="p">(</span><span class="n">EmbetterBase</span><span class="p">):</span>
<span class="normal">67</span></pre></div></td><td class="code"><div><pre><span></span><code><span class="k">class</span><span class="w"> </span><span class="nc">ColumnGrabber</span><span class="p">(</span><span class="n">EmbetterBase</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Component that can grab a pandas column as a list.</span>

Expand Down Expand Up @@ -639,10 +639,10 @@ <h2 id="columngrabber">ColumnGrabber</h2>
<span class="sd"> ```</span>
<span class="sd"> &quot;&quot;&quot;</span>

<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">colname</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">colname</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">colname</span> <span class="o">=</span> <span class="n">colname</span>

<span class="k">def</span> <span class="nf">transform</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="k">def</span><span class="w"> </span><span class="nf">transform</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Takes a column from pandas and returns it as a list.</span>
<span class="sd"> &quot;&quot;&quot;</span>
Expand Down Expand Up @@ -683,7 +683,7 @@ <h2 id="embetter.grab.ColumnGrabber.transform" class="doc doc-heading">
<span class="normal">64</span>
<span class="normal">65</span>
<span class="normal">66</span>
<span class="normal">67</span></pre></div></td><td class="code"><div><pre><span></span><code><span class="k">def</span> <span class="nf">transform</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="normal">67</span></pre></div></td><td class="code"><div><pre><span></span><code><span class="k">def</span><span class="w"> </span><span class="nf">transform</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Takes a column from pandas and returns it as a list.</span>
<span class="sd"> &quot;&quot;&quot;</span>
Expand Down Expand Up @@ -730,16 +730,16 @@ <h2 id="embetter.grab.ColumnGrabber.transform" class="doc doc-heading">
<span class="normal">82</span>
<span class="normal">83</span>
<span class="normal">84</span>
<span class="normal">85</span></pre></div></td><td class="code"><div><pre><span></span><code><span class="k">class</span> <span class="nc">KeyGrabber</span><span class="p">:</span>
<span class="normal">85</span></pre></div></td><td class="code"><div><pre><span></span><code><span class="k">class</span><span class="w"> </span><span class="nc">KeyGrabber</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Effectively the same thing as the ColumnGrabber, except this is</span>
<span class="sd"> meant to work on generators of dictionaries instead of dataframes.</span>
<span class="sd"> &quot;&quot;&quot;</span>

<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">colname</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">colname</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">colname</span> <span class="o">=</span> <span class="n">colname</span>

<span class="k">def</span> <span class="nf">transform</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="k">def</span><span class="w"> </span><span class="nf">transform</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Takes a column from pandas and returns it as a list.</span>
<span class="sd"> &quot;&quot;&quot;</span>
Expand Down Expand Up @@ -784,7 +784,7 @@ <h2 id="embetter.grab.KeyGrabber.transform" class="doc doc-heading">
<span class="normal">82</span>
<span class="normal">83</span>
<span class="normal">84</span>
<span class="normal">85</span></pre></div></td><td class="code"><div><pre><span></span><code><span class="k">def</span> <span class="nf">transform</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="normal">85</span></pre></div></td><td class="code"><div><pre><span></span><code><span class="k">def</span><span class="w"> </span><span class="nf">transform</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">X</span><span class="p">,</span> <span class="n">y</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Takes a column from pandas and returns it as a list.</span>
<span class="sd"> &quot;&quot;&quot;</span>
Expand Down
20 changes: 10 additions & 10 deletions API/model/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -153,7 +153,7 @@


<li class="md-tabs__item">
<a href="../../finetuners/" class="md-tabs__link">
<a href="../../finetuners.md" class="md-tabs__link">
Finetuners
</a>
</li>
Expand Down Expand Up @@ -263,7 +263,7 @@


<li class="md-nav__item">
<a href="../../finetuners/" class="md-nav__link">
<a href="../../finetuners.md" class="md-nav__link">
Finetuners
</a>
</li>
Expand Down Expand Up @@ -536,8 +536,8 @@ <h2 id="differenceclassifier">DifferenceClassifier</h2>
</tbody>
</table>
<p>Usage:</p>
<div class="highlight"><pre><span></span><code><span class="kn">from</span> <span class="nn">embetter.model</span> <span class="kn">import</span> <span class="n">DifferenceClassifier</span>
<span class="kn">from</span> <span class="nn">embetter.text</span> <span class="kn">import</span> <span class="n">SentenceEncoder</span>
<div class="highlight"><pre><span></span><code><span class="kn">from</span><span class="w"> </span><span class="nn">embetter.model</span><span class="w"> </span><span class="kn">import</span> <span class="n">DifferenceClassifier</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">embetter.text</span><span class="w"> </span><span class="kn">import</span> <span class="n">SentenceEncoder</span>

<span class="n">mod</span> <span class="o">=</span> <span class="n">DifferenceClassifier</span><span class="p">(</span><span class="n">enc</span><span class="o">=</span><span class="n">SentenceEncoder</span><span class="p">())</span>

Expand Down Expand Up @@ -615,7 +615,7 @@ <h2 id="differenceclassifier">DifferenceClassifier</h2>
<span class="normal">60</span>
<span class="normal">61</span>
<span class="normal">62</span>
<span class="normal">63</span></pre></div></td><td class="code"><div><pre><span></span><code><span class="k">class</span> <span class="nc">DifferenceClassifier</span><span class="p">:</span>
<span class="normal">63</span></pre></div></td><td class="code"><div><pre><span></span><code><span class="k">class</span><span class="w"> </span><span class="nc">DifferenceClassifier</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Classifier for similarity using encoders under the hood.</span>

Expand Down Expand Up @@ -652,25 +652,25 @@ <h2 id="differenceclassifier">DifferenceClassifier</h2>
<span class="sd"> ```</span>
<span class="sd"> &quot;&quot;&quot;</span>

<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">enc</span><span class="p">:</span> <span class="n">TransformerMixin</span><span class="p">,</span> <span class="n">clf_head</span><span class="p">:</span> <span class="n">ClassifierMixin</span> <span class="o">=</span> <span class="kc">None</span><span class="p">):</span>
<span class="k">def</span><span class="w"> </span><span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">enc</span><span class="p">:</span> <span class="n">TransformerMixin</span><span class="p">,</span> <span class="n">clf_head</span><span class="p">:</span> <span class="n">ClassifierMixin</span> <span class="o">=</span> <span class="kc">None</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">enc</span> <span class="o">=</span> <span class="n">enc</span>
<span class="bp">self</span><span class="o">.</span><span class="n">clf_head</span> <span class="o">=</span> <span class="p">(</span>
<span class="n">LogisticRegression</span><span class="p">(</span><span class="n">class_weight</span><span class="o">=</span><span class="s2">&quot;balanced&quot;</span><span class="p">)</span> <span class="k">if</span> <span class="ow">not</span> <span class="n">clf_head</span> <span class="k">else</span> <span class="n">clf_head</span>
<span class="p">)</span>

<span class="k">def</span> <span class="nf">_calc_feats</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">X1</span><span class="p">,</span> <span class="n">X2</span><span class="p">):</span>
<span class="k">def</span><span class="w"> </span><span class="nf">_calc_feats</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">X1</span><span class="p">,</span> <span class="n">X2</span><span class="p">):</span>
<span class="n">enc1</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">enc</span><span class="o">.</span><span class="n">transform</span><span class="p">(</span><span class="n">X1</span><span class="p">)</span>
<span class="n">enc2</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">enc</span><span class="o">.</span><span class="n">transform</span><span class="p">(</span><span class="n">X2</span><span class="p">)</span>
<span class="k">return</span> <span class="n">np</span><span class="o">.</span><span class="n">abs</span><span class="p">(</span><span class="n">enc1</span> <span class="o">-</span> <span class="n">enc2</span><span class="p">)</span>

<span class="k">def</span> <span class="nf">fit</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">X1</span><span class="p">,</span> <span class="n">X2</span><span class="p">,</span> <span class="n">y</span><span class="p">):</span>
<span class="k">def</span><span class="w"> </span><span class="nf">fit</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">X1</span><span class="p">,</span> <span class="n">X2</span><span class="p">,</span> <span class="n">y</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">clf_head</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_calc_feats</span><span class="p">(</span><span class="n">X1</span><span class="p">,</span> <span class="n">X2</span><span class="p">),</span> <span class="n">y</span><span class="p">)</span>
<span class="k">return</span> <span class="bp">self</span>

<span class="k">def</span> <span class="nf">predict</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">X1</span><span class="p">,</span> <span class="n">X2</span><span class="p">):</span>
<span class="k">def</span><span class="w"> </span><span class="nf">predict</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">X1</span><span class="p">,</span> <span class="n">X2</span><span class="p">):</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">clf_head</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_calc_feats</span><span class="p">(</span><span class="n">X1</span><span class="p">,</span> <span class="n">X2</span><span class="p">))</span>

<span class="k">def</span> <span class="nf">predict_proba</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">X1</span><span class="p">,</span> <span class="n">X2</span><span class="p">):</span>
<span class="k">def</span><span class="w"> </span><span class="nf">predict_proba</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">X1</span><span class="p">,</span> <span class="n">X2</span><span class="p">):</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">clf_head</span><span class="o">.</span><span class="n">predict_proba</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_calc_feats</span><span class="p">(</span><span class="n">X1</span><span class="p">,</span> <span class="n">X2</span><span class="p">))</span>
</code></pre></div></td></tr></table></div>
</details>
Expand Down
Loading

0 comments on commit bf0dd4e

Please sign in to comment.