Skip to content

Commit

Permalink
feat: Part 2 - Add custom LLM inference class (#630)
Browse files Browse the repository at this point in the history
**Reason for Change**:
This series of PR will integrate llamaindex RAG service for Kaito.

This PR contains the custom LLM inference class for llamaindex. We need
this class because we use custom HTTP endpoint or OpenAI API for
handling LLM requests so we need a custom LLM inference class.


https://docs.llamaindex.ai/en/stable/module_guides/models/llms/usage_custom/#example-using-a-custom-llm-model-advanced
  • Loading branch information
ishaansehgal99 authored Oct 15, 2024
1 parent 1d99028 commit 870a93d
Show file tree
Hide file tree
Showing 3 changed files with 73 additions and 0 deletions.
20 changes: 20 additions & 0 deletions ragengine/config.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
# config.py

# Variables are set via environment variables from the RAGEngine CR
# and exposed to the pod. For example, InferenceURL is specified in the CR and
# passed to the pod via env variables.

import os

EMBEDDING_TYPE = os.getenv("EMBEDDING_TYPE", "local")
EMBEDDING_URL = os.getenv("EMBEDDING_URL")

INFERENCE_URL = os.getenv("INFERENCE_URL", "http://localhost:5000/chat")
INFERENCE_ACCESS_SECRET = os.getenv("AccessSecret", "default-inference-secret")
# RESPONSE_FIELD = os.getenv("RESPONSE_FIELD", "result")

MODEL_ID = os.getenv("MODEL_ID", "BAAI/bge-small-en-v1.5")
VECTOR_DB_TYPE = os.getenv("VECTOR_DB_TYPE", "faiss")
INDEX_SERVICE_NAME = os.getenv("INDEX_SERVICE_NAME", "default-index-service")
ACCESS_SECRET = os.getenv("ACCESS_SECRET", "default-access-secret")
PERSIST_DIR = "storage"
Empty file added ragengine/inference/__init__.py
Empty file.
53 changes: 53 additions & 0 deletions ragengine/inference/inference.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
from typing import Any
from llama_index.core.llms import CustomLLM, CompletionResponse, LLMMetadata, CompletionResponseGen
from llama_index.llms.openai import OpenAI
from llama_index.core.llms.callbacks import llm_completion_callback
import requests
from config import INFERENCE_URL, INFERENCE_ACCESS_SECRET #, RESPONSE_FIELD

class Inference(CustomLLM):
params: dict = {}

def set_params(self, params: dict) -> None:
self.params = params

def get_param(self, key, default=None):
return self.params.get(key, default)

@llm_completion_callback()
def stream_complete(self, prompt: str, **kwargs: Any) -> CompletionResponseGen:
pass

@llm_completion_callback()
def complete(self, prompt: str, **kwargs) -> CompletionResponse:
try:
if "openai" in INFERENCE_URL:
return self._openai_complete(prompt, **kwargs, **self.params)
else:
return self._custom_api_complete(prompt, **kwargs, **self.params)
finally:
# Clear params after the completion is done
self.params = {}

def _openai_complete(self, prompt: str, **kwargs: Any) -> CompletionResponse:
llm = OpenAI(
api_key=INFERENCE_ACCESS_SECRET,
**kwargs # Pass all kwargs directly; kwargs may include model, temperature, max_tokens, etc.
)
return llm.complete(prompt)

def _custom_api_complete(self, prompt: str, **kwargs: Any) -> CompletionResponse:
headers = {"Authorization": f"Bearer {INFERENCE_ACCESS_SECRET}"}
data = {"prompt": prompt, **kwargs}

response = requests.post(INFERENCE_URL, json=data, headers=headers)
response_data = response.json()

# Dynamically extract the field from the response based on the specified response_field
# completion_text = response_data.get(RESPONSE_FIELD, "No response field found") # not necessary for now
return CompletionResponse(text=str(response_data))

@property
def metadata(self) -> LLMMetadata:
"""Get LLM metadata."""
return LLMMetadata()

0 comments on commit 870a93d

Please sign in to comment.