Skip to content
forked from bqplot/bqplot

Plotting library for IPython/Jupyter Notebooks

License

Notifications You must be signed in to change notification settings

kaiayoung/bqplot

 
 

Repository files navigation

bqplot

bqplot is a Grammar of Graphics-based interactive plotting framework for the Jupyter notebook.

bqplot

In bqplot, every single attribute of the plot is an interactive widget. This allows the user to integrate any plot with IPython widgets to create a complex and feature rich GUI from just a few simple lines of Python code.

For example, just a few lines of code allow us to generate an interactive map that visualizes the 2016 US Presidential County Level Results:

bqplot

Goals

  • provide a unified framework for 2-D visualizations with a pythonic API.
  • provide a sensible API for adding user interactions (panning, zooming, selection, etc)

Two APIs are provided

  • Users can build custom visualizations using the internal object model, which is inspired by the constructs of the Grammar of Graphics (figure, marks, axes, scales), and enrich their visualization with our Interaction Layer.
  • Or they can use the context-based API similar to Matplotlib's pyplot, which provides sensible default choices for most parameters.

Getting Started

Try it online with Binder

Binder

Dependencies

This package depends on the following packages:

  • ipywidgets (version >= 7.0.0)
  • traitlets (version >= 4.3.0)
  • traittypes
  • numpy
  • pandas

Installation

Using pip:

$ pip install bqplot
$ jupyter nbextension enable --py --sys-prefix bqplot  # can be skipped for notebook version 5.3 and above

Using conda

$ conda install -c conda-forge bqplot

For a development installation (requires npm (version >= 3.8) and node (version >= 4.0)):

$ git clone https://github.com/bloomberg/bqplot.git
$ cd bqplot
$ pip install -e .
$ jupyter nbextension install --py --symlink --sys-prefix bqplot
$ jupyter nbextension enable --py --sys-prefix bqplot

Note for developers: the --symlink argument on Linux or OS X allows one to modify the JavaScript code in-place. This feature is not available with Windows.

For the experimental JupyterLab extension, install the Python package, make sure the Jupyter widgets extension is installed, and install the bqplot extension:

$ pip install bqplot
$ jupyter labextension install @jupyter-widgets/jupyterlab-manager # install the Jupyter widgets extension
$ jupyter labextension install bqplot

Loading bqplot

# In a Jupyter notebook
import bqplot

That's it! You're ready to go!

Examples

Using the pyplot API

from bqplot import pyplot as plt
import numpy as np

plt.figure(1, title='Line Chart')
np.random.seed(0)
n = 200
x = np.linspace(0.0, 10.0, n)
y = np.cumsum(np.random.randn(n))
plt.plot(x, y)
plt.show()

Pyplot Screenshot

Using the bqplot internal object model

import numpy as np
from IPython.display import display
from bqplot import (
    OrdinalScale, LinearScale, Bars, Lines, Axis, Figure
)

size = 20
np.random.seed(0)

x_data = np.arange(size)

x_ord = OrdinalScale()
y_sc = LinearScale()

bar = Bars(x=x_data, y=np.random.randn(2, size), scales={'x': x_ord, 'y':
y_sc}, type='stacked')
line = Lines(x=x_data, y=np.random.randn(size), scales={'x': x_ord, 'y': y_sc},
             stroke_width=3, colors=['red'], display_legend=True, labels=['Line chart'])

ax_x = Axis(scale=x_ord, grid_lines='solid', label='X')
ax_y = Axis(scale=y_sc, orientation='vertical', tick_format='0.2f',
            grid_lines='solid', label='Y')

Figure(marks=[bar, line], axes=[ax_x, ax_y], title='API Example',
       legend_location='bottom-right')

Bqplot Screenshot

Help / Documentation

  • API reference documentation: Read the documentation of the stable version Read the documentation of the development version

  • Talk to us on the ipywidgets Gitter chat: Join the chat at https://gitter.im/jupyter-widgets/Lobby

  • Send us an email at bqplot@bloomberg.net

License

This software is licensed under the Apache 2.0 license. See the LICENSE file for details.

About

Plotting library for IPython/Jupyter Notebooks

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • JavaScript 75.2%
  • Python 23.9%
  • CSS 0.9%