[High-Quality Synthetic Instruction-Following Datasets Generated by GPT4o on 🤗]
We implement our KaSA upon LoRA in the official Hugging Face's PEFT repository. The source code for our KaSA implementation can be found at peft/src/peft/tuners/lora/layer.py. It is worth noting that our implementation is version-agnostic regarding PEFT. We achieve consistent results between the latest (0.13.1.dev0) and older (0.6.3.dev0) versions, thus avoiding gains due to differences in implementation.
Important
If you use the data or code in this repo, please consider citing the following paper:
@article{wang2024kasa,
title={KaSA: Knowledge-Aware Singular-Value Adaptation of Large Language Models},
author={Wang, Fan and Jiang, Juyong and Park, Chansung and Kim, Sunghun and Tang, Jing},
journal={arXiv preprint arXiv:2412.06071},
year={2024}
}
conda create -n kasa python=3.10
conda install pytorch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 pytorch-cuda=11.8 -c pytorch -c nvidia
# install peft with local folder
cd peft
pip install -e .
# note the version of packages
pip install datasets==2.21.0
pip install numpy==1.26.4
pip install scipy
pip install scikit-learn
pip install sentencepiece
Fine-tuning the HuggingFace community models for sequence classification on the General Language Understanding Evaluation (GLUE) benchmark involves working with 6 different tasks, including CoLA, SST-2, MRPC, STS-B, QNLI, and RTE. The details of the dataset can be found at https://huggingface.co/datasets/nyu-mll/glue.
Here is an example of how to start fine-tuning RoBERTa Base with the CoLA task:
cd runs
bash robert_base_cola.sh
where the contents of robert_base_cola.sh
is delineated in the following:
#!/bin/bash
cd ../
mkdir -p logs/roberta-base
# variables
CUDA_DEVICE=2
MODEL_NAME_OR_PATH="roberta-base"
DATASET="cola"
TASK="cola"
BATCH_SIZE=32
MAX_LENGTH=512
NUM_EPOCH=100
HEAD_LR=4e-4
MODULE_LR=4e-4
LORA_R=8
LORA_ALPHA=16
LORA_DROPOUT=0.0
BETA=0.0001
GEMMA=0.001
SEED=0
WEIGHT_DECAY=0.0
# run
LOG_FILE="logs/${MODEL_NAME_OR_PATH}/${MODEL_NAME_OR_PATH}_${TASK}_bs_${BATCH_SIZE}_maxlen_${MAX_LENGTH}_lora_r_${LORA_R}_lora_alpha_${LORA_ALPHA}_lora_dropout_${LORA_DROPOUT}_modulelr_${MODULE_LR}_headlr_${HEAD_LR}_beta_${BETA}_gemma_${GEMMA}_weight_decay_${WEIGHT_DECAY}_seed_${SEED}.log"
CUDA_VISIBLE_DEVICES=$CUDA_DEVICE python main.py \
--model_name_or_path $MODEL_NAME_OR_PATH \
--dataset $DATASET \
--task $TASK \
--max_length $MAX_LENGTH \
--bs $BATCH_SIZE \
--lora_r $LORA_R \
--lora_alpha $LORA_ALPHA \
--lora_dropout $LORA_DROPOUT \
--num_epoch $NUM_EPOCH \
--head_lr $HEAD_LR \
--module_lr $MODULE_LR \
--beta $BETA \
--gemma $GEMMA \
--weight_decay $WEIGHT_DECAY \
--seed $SEED 2>&1 | tee $LOG_FILE
To load a PEFT model for inference:
from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer
import torch
model = AutoPeftModelForCausalLM.from_pretrained("saves/kasa/checkpoint-52580").to("cuda")
tokenizer = AutoTokenizer.from_pretrained("saves/kasa/checkpoint-52580")
model.eval()
template = "### Context : {}\n### Completion : "
prompt = template.format("name : Blue Spice | Type : coffee shop | area : city centre")
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(input_ids=inputs["input_ids"].to("cuda"), max_new_tokens=50)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
> "Blue Spice is a coffee shop located in the city centre."
Tip
The running logs and results of all our experiments are saved in the logs path. The following is an example.
epoch 0: {'matthews_correlation': 0.0} , current_best_corr: 0.0 train_loss: 0.5064952373504639
epoch 1: {'matthews_correlation': 0.4528085001256977} , current_best_corr: 0.4528085001256977 train_loss: 0.2968645691871643
epoch 2: {'matthews_correlation': 0.5314083843246411} , current_best_corr: 0.5314083843246411 train_loss: 0.3451506495475769
...
epoch 96: {'matthews_correlation': 0.6331219341866674} , current_best_corr: 0.6581805893879898 train_loss: 0.057534683495759964
epoch 97: {'matthews_correlation': 0.6206837048829764} , current_best_corr: 0.6581805893879898 train_loss: 0.057706814259290695
epoch 98: {'matthews_correlation': 0.6281691768918801} , current_best_corr: 0.6581805893879898 train_loss: 0.05744687840342522
epoch 99: {'matthews_correlation': 0.6256673855627156} , current_best_corr: 0.6581805893879898 train_loss: 0.0582236722111702
model_name_or_path: roberta-base
dataset: cola
task: cola
peft: kasa
num_epochs: 100
bs: 32
lora_r: 8
lora_alpha: 16
lora_dropout: 0.0
head_lr: 0.0004
module_lr: 0.0004
max_length: 512
weight_decay: 0.0
warmup_ratio: 0.06
seed: 0
beta: 0.0001
gemma: 0.001
...
0%| | 0/33 [00:00<?, ?it/s]
9%|▉ | 3/33 [00:00<00:01, 27.53it/s]
21%|██ | 7/33 [00:00<00:00, 30.12it/s]
30%|███ | 10/33 [00:00<00:00, 28.58it/s]
39%|███▉ | 13/33 [00:00<00:00, 27.65it/s]
48%|████▊ | 16/33 [00:00<00:00, 27.95it/s]
58%|█████▊ | 19/33 [00:00<00:00, 25.45it/s]
67%|██████▋ | 22/33 [00:00<00:00, 25.99it/s]
76%|███████▌ | 25/33 [00:00<00:00, 24.67it/s]
88%|████████▊ | 29/33 [00:01<00:00, 25.53it/s]
100%|██████████| 33/33 [00:01<00:00, 27.68it/s]
100%|██████████| 33/33 [00:01<00:00, 27.01it/s]
epoch 99: {'matthews_correlation': 0.6256673855627156}, current_best_corr: 0.6581805893879898 train_loss: 0.0582236722111702
- loralib: https://github.com/microsoft/LoRA
- PEFT: https://github.com/huggingface/peft
- The Alignment Handbook: https://github.com/huggingface/alignment-handbook
- LLaMA-Factory: https://github.com/hiyouga/LLaMA-Factory
- LLM-Adapters: https://github.com/AGI-Edgerunners/LLM-Adapters
- LlamaDuo: https://github.com/deep-diver/llamaduo
- GLUE Benchmark: https://huggingface.co/datasets/nyu-mll/glue
- E2E Benchmark: https://huggingface.co/datasets/kibru/e2e
- Instruction Tuning Alpaca-Cleaned: https://huggingface.co/datasets/yahma/alpaca-cleaned
- NLG Evaluation: https://github.com/microsoft/LoRA/blob/main/examples/NLG/eval
- LLM as Judge: https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge
- Language Model Evaluation Harness: https://github.com/EleutherAI/lm-evaluation-harness