-
Notifications
You must be signed in to change notification settings - Fork 59
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
script to extract normals and color as srv
- Loading branch information
Showing
1 changed file
with
166 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,166 @@ | ||
/******************************************************************************* | ||
* Copyright (C) 2017 Electric Movement Inc. | ||
* | ||
* This file is part of Robotic Arm: Pick and Place project for Udacity | ||
* Robotics nano-degree program | ||
* | ||
* All Rights Reserved. | ||
******************************************************************************/ | ||
|
||
// Author: Brandon Kinman | ||
|
||
#include <ros/ros.h> | ||
#include <ros/console.h> | ||
#include <pcl_conversions/pcl_conversions.h> | ||
#include <pcl_ros/point_cloud.h> | ||
#include <pcl/features/normal_3d.h> | ||
#include <pcl/features/vfh.h> | ||
#include <sensor_msgs/PointCloud2.h> | ||
|
||
#include <obj_recognition/GetNormals.h> | ||
//#include <obj_recognition/GetFloatArrayFeature.h> | ||
|
||
/* | ||
* Brief: | ||
* This node generates normal features for a point cloud | ||
*/ | ||
|
||
class FeatureExtractor | ||
{ | ||
public: | ||
explicit FeatureExtractor(ros::NodeHandle nh) | ||
: nh_(nh) | ||
{ | ||
// Define Publishers and Subscribers here | ||
cluster_in_sub_ = nh_.subscribe("cluster_in", 1, &FeatureExtractor::clusterCallback, this); | ||
normals_out_pub_ = nh_.advertise<sensor_msgs::PointCloud2>("normals_out", 1); | ||
get_normals_srv_ = nh_.advertiseService("get_normals", &FeatureExtractor::getNormalsReq, this); | ||
//get_vfh_srv_ = np_.advertiseService("get_vfh", &FeatureExtractor::getVFHReq, this); | ||
} | ||
|
||
private: | ||
ros::NodeHandle nh_; | ||
ros::Subscriber cluster_in_sub_; | ||
ros::Publisher normals_out_pub_; | ||
ros::ServiceServer get_normals_srv_; | ||
|
||
void clusterCallback(const sensor_msgs::PointCloud2& cloud_msg) | ||
{ | ||
ROS_INFO("Cluster Received"); | ||
|
||
pcl::PointCloud<pcl::PointXYZ> *p_cloud = new pcl::PointCloud<pcl::PointXYZ>(); | ||
const boost::shared_ptr<pcl::PointCloud<pcl::PointXYZ> > sp_pcl_cloud(p_cloud); | ||
pcl::fromROSMsg(cloud_msg, *p_cloud); | ||
|
||
// Create the normal estimation class, and pass the input dataset to it | ||
pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> ne; | ||
ne.setInputCloud (sp_pcl_cloud); | ||
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ> ()); | ||
ne.setSearchMethod (tree); | ||
|
||
// Use all neighbors in a sphere of radius 3cm | ||
ne.setRadiusSearch(0.03); | ||
|
||
// Output datasets | ||
pcl::PointCloud<pcl::Normal>::Ptr cloud_normals(new pcl::PointCloud<pcl::Normal>); | ||
|
||
// Compute the features | ||
ne.compute(*cloud_normals); | ||
|
||
ROS_INFO("Done!"); | ||
|
||
sensor_msgs::PointCloud2 normals_out_msg; | ||
pcl::toROSMsg(*cloud_normals, normals_out_msg); | ||
|
||
normals_out_pub_.publish(normals_out_msg); | ||
} | ||
|
||
bool getNormalsReq(obj_recognition::GetNormals::Request &req, obj_recognition::GetNormals::Response &rsp) | ||
{ | ||
rsp.cluster = req.cluster; | ||
|
||
pcl::PointCloud<pcl::PointXYZ> *p_cloud = new pcl::PointCloud<pcl::PointXYZ>(); | ||
const boost::shared_ptr<pcl::PointCloud<pcl::PointXYZ> > sp_pcl_cloud(p_cloud); | ||
pcl::fromROSMsg(req.cluster, *p_cloud); | ||
|
||
// Create the normal estimation class, and pass the input dataset to it | ||
pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> ne; | ||
ne.setInputCloud (sp_pcl_cloud); | ||
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ> ()); | ||
ne.setSearchMethod (tree); | ||
|
||
// Use all neighbors in a sphere of radius 3cm | ||
ne.setRadiusSearch(0.03); | ||
|
||
// Output datasets | ||
pcl::PointCloud<pcl::Normal>::Ptr cloud_normals(new pcl::PointCloud<pcl::Normal>); | ||
|
||
// Compute the features | ||
ne.compute(*cloud_normals); | ||
|
||
pcl::toROSMsg(*cloud_normals, rsp.cluster); | ||
|
||
return true; | ||
} | ||
|
||
}; // FeatureExtractor | ||
|
||
// bool getVFHReq(obj_recognition::GetNormals::Request &req, obj_recognition::GetNormals::Response &rsp) | ||
// { | ||
// pcl::PointCloud<pcl::PointXYZ> *p_cloud = new pcl::PointCloud<pcl::PointXYZ>(); | ||
// const boost::shared_ptr<pcl::PointCloud<pcl::PointXYZ> > sp_pcl_cloud(p_cloud); | ||
// pcl::fromROSMsg(req.cluster, *p_cloud); | ||
|
||
// // Create the normal estimation class, and pass the input dataset to it | ||
// pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> ne; | ||
// ne.setInputCloud (sp_pcl_cloud); | ||
// pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ> ()); | ||
// ne.setSearchMethod (tree); | ||
|
||
// // Use all neighbors in a sphere of radius 3cm | ||
// ne.setRadiusSearch(0.03); | ||
|
||
// // Output datasets | ||
// pcl::PointCloud<pcl::Normal>::Ptr cloud_normals(new pcl::PointCloud<pcl::Normal>); | ||
|
||
// // Compute the features | ||
// ne.compute(*cloud_normals); | ||
|
||
// // Create the VFH estimation class, and pass the input dataset+normals to it | ||
// pcl::VFHEstimation<pcl::PointXYZ, pcl::Normal, pcl::VFHSignature308> vfh; | ||
// vfh.setInputCloud(sp_pcl_cloud); | ||
// vfh.setInputNormals(*cloud_normals); | ||
// // alternatively, if cloud is of type PointNormal, do vfh.setInputNormals (cloud); | ||
|
||
// // Create an empty kdtree representation, and pass it to the FPFH estimation object. | ||
// // Its content will be filled inside the object, based on the given input dataset (as no other search surface is given). | ||
// vfh.setSearchMethod (tree); | ||
|
||
// // Output datasets | ||
// pcl::PointCloud<pcl::VFHSignature308>::Ptr vfhs (new pcl::PointCloud<pcl::VFHSignature308> ()); | ||
|
||
// // Compute the features | ||
// vfh.compute (*vfhs); | ||
|
||
// for(size_t i = 0; i < 308; ++i) | ||
// { | ||
// vfhs.points[0].histogram[i]; | ||
// } | ||
|
||
|
||
// } | ||
|
||
|
||
int main(int argc, char **argv) | ||
{ | ||
ros::init(argc, argv, "feature_extractor"); | ||
ros::NodeHandle nh("~"); | ||
|
||
FeatureExtractor nfe(nh); | ||
|
||
// Spin until ROS is shutdown | ||
while (ros::ok()) | ||
ros::spin(); | ||
|
||
return 0; | ||
} |