Skip to content

Use this package to compute intrinsic dimensionality of your task given a fixed neural network in PYTORCH! 🔥

License

Notifications You must be signed in to change notification settings

jgamper/intrinsic-dimensionality

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

70 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

About

This package includes fastfood and dense transformation wrappers for pytorch modules, primarily to reproduce results from Li, Chunyuan, et al. "Measuring the intrinsic dimension of objective landscapes." arXiv preprint arXiv:1804.08838 (2018) - see below for info.

  • All contributions are welcome! Please raise an issue for a bug, feature or pull request!

  • Give this repo a star! ⭐

Install

pip install intrinsic-dimensionality

Quick start on your classification task!

import os
os.environ["CUDA_VISIBLE_DEVICES"] = DEVICE_NUM
import torch
from torch import nn
import torchvision.models as models
from intrinsic import FastFoodWrap

class Classifier(nn.Module):
    def __init__(self, input_dim, n_classes):
        super(Classifier, self).__init__()
        self.fc = nn.Linear(input_dim, n_classes)
        self.maxpool = nn.AdaptiveMaxPool2d(1)

    def forward(self, x):
        x = self.maxpool(x)
        x = x.reshape(x.size(0), -1)
        x = self.fc(x)
        return x

def get_resnet(encoder_name, num_classes, pretrained=False):
    assert encoder_name in ["resnet18", "resnet50"], "{} is a wrong encoder name!".format(encoder_name)
    if encoder_name == "resnet18":
        model = models.resnet18(pretrained=pretrained)
        latent_dim = 512
    else:
        model = models.resnet50(pretrained=pretrained)
        latent_dim = 2048
    children = (list(model.children())[:-2] + [Classifier(latent_dim, num_classes)])
    model = torch.nn.Sequential(*children)
    return model

# Get model and wrap it in fastfood
model = get_resnet("resnet18", num_classes=YOUR_NUMBER_OF_CLASSES).cuda()
model = FastFoodWrap(model, intrinsic_dimension=100, device=DEVICE_NUM)

Reproducing experiments from the paper

Full thread about reproducibility results is available here. Note that some hyper-parameters were not listed in the paper - I raised issues on Uber's Github repo here.

I am able to reproduce their MNIST results with LR=0.0003, batch size 32 for both dense and fastfood transformations using FCN (fcn-dense, fcn-fastfood). However, not for LeNet (cnn-dense, cnn-fastfood).

For CIFAR-10, with far larger resnet (Resnet-18 11mil param) vs 280k 20-layer resnet used in the paper, results appear to be similar. FCN results in appendix (Fig S7) suggest some variation is to be expected.

Cite

@misc{jgamper2020intrinsic,
  title   = "Intrinsic-dimensionality Pytorch",
  author  = "Gamper, Jevgenij",
  year    = "2020",
  url     = "https://github.com/jgamper/intrinsic-dimensionality"
}

@article{li2018measuring,
  title={Measuring the intrinsic dimension of objective landscapes},
  author={Li, Chunyuan and Farkhoor, Heerad and Liu, Rosanne and Yosinski, Jason},
  journal={arXiv preprint arXiv:1804.08838},
  year={2018}
}

About

Use this package to compute intrinsic dimensionality of your task given a fixed neural network in PYTORCH! 🔥

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages