This repository is the implementation of MATA*, which presents a data-driven hybrid approach MATA* based on Graph Neural Networks (SEGCN) and A* algorithms, which leverage the learned candidate matching nodes to prune un-promising search directions of A*LSa algorithm to approximate GED.
conda create -n envmata python=3.8.13
source activate envmata
conda install pytorch==1.9.0 torchvision==0.10.0 torchaudio==0.9.0 cpuonly -c pytorch
pip install torch-cluster==1.5.9 -f https://pytorch-geometric.com/whl/torch-1.9.0+cpu.html
pip install torch-scatter==2.0.9 -f https://pytorch-geometric.com/whl/torch-1.9.0+cpu.html
pip install torch-sparse==0.6.12 -f https://pytorch-geometric.com/whl/torch-1.9.0+cpu.html
pip install torch-spline-conv==1.2.1 -f https://pytorch-geometric.com/whl/torch-1.9.0+cpu.html
pip install torch-geometric==2.0.4
pip install -r requirements_test.txt
Note that:
- The given Pytorch 1.9 is support by CPU. For different CUDA versions of Pytorch, please refer to the official installation guide for more details.
- You may change the version of networkx to 1.10 for running A*Beam, Hungarian, and VJ, follow the instructions on https://github.com/yunshengb/graph-matching-toolkit
The A*LSa algorithm is implemented by C based on the official repository https://github.com/LijunChang/Graph_Edit_Distance. Follow these instructions to build the C code:
g++ -shared -Wl,-soname,mata -o mata.so -fPIC Mata.cpp Application.cpp
Then the file mata.so
is generated in the path /Astar/
.
For the using of c++11, you need append -std=c++11
in this command.
-
Test the results on AIDS datasets
python main.py --dataset AIDS700nef --max-degree 12 --topk 4 --batch-size 128 --epochs 10000 --task 3 --test > test_aids.txt
-
IMDB
python main.py --dataset IMDBMulti --max-degree 40 --topk 6 --batch-size 128 --epochs 10000 --val-epochs 1000 --task 3 --test
-
CANCER
python main.py --dataset CANCER --max-degree 18 --topk 3 --batch-size 128 --epochs 6000 --val-epochs 800 --task 3 --test
Note that: The ground-truth of IMDB and CANCER are generated by the smallest edit distances of A*Beam, Hungarian, and VJ. The best results should be re-computed when evaluating IMDB and CANCER.