forked from apache/spark
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add Window Function support for DataFrame
- Loading branch information
1 parent
a25c1ab
commit 64e18a7
Showing
3 changed files
with
432 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
257 changes: 257 additions & 0 deletions
257
sql/core/src/main/scala/org/apache/spark/sql/WindowFunctionDefinition.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,257 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one or more | ||
* contributor license agreements. See the NOTICE file distributed with | ||
* this work for additional information regarding copyright ownership. | ||
* The ASF licenses this file to You under the Apache License, Version 2.0 | ||
* (the "License"); you may not use this file except in compliance with | ||
* the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
package org.apache.spark.sql | ||
|
||
import scala.language.implicitConversions | ||
|
||
import org.apache.spark.annotation.Experimental | ||
import org.apache.spark.sql.catalyst.expressions._ | ||
|
||
/** | ||
* :: Experimental :: | ||
* A set of methods for window function definition for aggregate expressions. | ||
* For example: | ||
* {{{ | ||
* df.select( | ||
* avg("value") | ||
* .over | ||
* .partitionBy("k1") | ||
* .orderBy("k2", "k3") | ||
* .row | ||
* .following(1) | ||
* .toColumn.as("avg_value"), | ||
* max("value") | ||
* .over | ||
* .partitionBy("k2") | ||
* .orderBy("k3") | ||
* .between | ||
* .preceding(4) | ||
* .following(3) | ||
* .toColumn.as("max_value")) | ||
* }}} | ||
* | ||
* | ||
*/ | ||
@Experimental | ||
class WindowFunctionDefinition protected[sql]( | ||
column: Column, | ||
partitionSpec: Seq[Expression] = Nil, | ||
orderSpec: Seq[SortOrder] = Nil, | ||
frame: WindowFrame = UnspecifiedFrame) { | ||
|
||
/** | ||
* Returns a new [[WindowFunctionDefinition]] partitioned by the specified column. | ||
* {{{ | ||
* // The following 2 are equivalent | ||
* df.over.partitionBy("k1", "k2", ...) | ||
* df.over.partitionBy($"K1", $"k2", ...) | ||
* }}} | ||
* @group window_funcs | ||
*/ | ||
@scala.annotation.varargs | ||
def partitionBy(colName: String, colNames: String*): WindowFunctionDefinition = { | ||
partitionBy((colName +: colNames).map(Column(_)): _*) | ||
} | ||
|
||
/** | ||
* Returns a new [[WindowFunctionDefinition]] partitioned by the specified column. For example: | ||
* {{{ | ||
* df.over.partitionBy($"col1", $"col2") | ||
* }}} | ||
* @group window_funcs | ||
*/ | ||
@scala.annotation.varargs | ||
def partitionBy(cols: Column*): WindowFunctionDefinition = { | ||
new WindowFunctionDefinition(column, cols.map(_.expr), orderSpec, frame) | ||
} | ||
|
||
/** | ||
* Returns a new [[WindowFunctionDefinition]] sorted by the specified column within | ||
* the partition. | ||
* {{{ | ||
* // The following 2 are equivalent | ||
* df.over.partitionBy("k1").orderBy("k2", "k3") | ||
* df.over.partitionBy("k1").orderBy($"k2", $"k3") | ||
* }}} | ||
* @group window_funcs | ||
*/ | ||
@scala.annotation.varargs | ||
def orderBy(colName: String, colNames: String*): WindowFunctionDefinition = { | ||
orderBy((colName +: colNames).map(Column(_)): _*) | ||
} | ||
|
||
/** | ||
* Returns a new [[WindowFunctionDefinition]] sorted by the specified column within | ||
* the partition. For example | ||
* {{{ | ||
* df.over.partitionBy("k1").orderBy($"k2", $"k3") | ||
* }}} | ||
* @group window_funcs | ||
*/ | ||
def orderBy(cols: Column*): WindowFunctionDefinition = { | ||
val sortOrder: Seq[SortOrder] = cols.map { col => | ||
col.expr match { | ||
case expr: SortOrder => | ||
expr | ||
case expr: Expression => | ||
SortOrder(expr, Ascending) | ||
} | ||
} | ||
new WindowFunctionDefinition(column, partitionSpec, sortOrder, frame) | ||
} | ||
|
||
/** | ||
* Returns a new ranged [[WindowFunctionDefinition]]. For example: | ||
* {{{ | ||
* df.over.partitionBy("k1").orderBy($"k2", $"k3").between | ||
* }}} | ||
* @group window_funcs | ||
*/ | ||
def between: WindowFunctionDefinition = { | ||
new WindowFunctionDefinition(column, partitionSpec, orderSpec, | ||
SpecifiedWindowFrame(RangeFrame, UnboundedPreceding, UnboundedFollowing)) | ||
} | ||
|
||
/** | ||
* Returns a new [[WindowFunctionDefinition]], with fixed number of records | ||
* from/to CURRENT ROW. For example: | ||
* {{{ | ||
* df.over.partitionBy("k1").orderBy($"k2", $"k3").row | ||
* }}} | ||
* @group window_funcs | ||
*/ | ||
def rows: WindowFunctionDefinition = { | ||
new WindowFunctionDefinition(column, partitionSpec, orderSpec, | ||
SpecifiedWindowFrame(RowFrame, UnboundedPreceding, UnboundedFollowing)) | ||
} | ||
|
||
/** | ||
* Returns a new [[WindowFunctionDefinition]], with range of preceding position specified. | ||
* For a Ranged [[WindowFunctionDefinition]], the range is [CURRENT_ROW - n, unspecified] | ||
* For a Fixed Row [[WindowFunctionDefinition]], the range as [CURRENT_ROW - n, CURRENT_ROW]. | ||
* For example: | ||
* {{{ | ||
* // The range is [CURRENT_ROW - 1, CURRENT_ROW] | ||
* df.over.partitionBy("k1").orderBy($"k2", $"k3").row.preceding(1) | ||
* // The range [CURRENT_ROW - 1, previous upper bound] | ||
* df.over.partitionBy("k1").orderBy($"k2", $"k3").between.preceding(1) | ||
* }}} | ||
* If n equals 0, it will be considered as CURRENT_ROW | ||
* @group window_funcs | ||
*/ | ||
def preceding(n: Int): WindowFunctionDefinition = { | ||
val newFrame = frame match { | ||
case f @ SpecifiedWindowFrame(RowFrame, _, _) if n == 0 => // TODO should we need this? | ||
f.copy(frameStart = CurrentRow, frameEnd = CurrentRow) | ||
case f @ SpecifiedWindowFrame(RowFrame, _, _) => | ||
f.copy(frameStart = ValuePreceding(n), frameEnd = CurrentRow) | ||
case f @ SpecifiedWindowFrame(RangeFrame, _, _) if n == 0 => f.copy(frameStart = CurrentRow) | ||
case f @ SpecifiedWindowFrame(RangeFrame, _, _) => f.copy(frameStart = ValuePreceding(n)) | ||
case f => throw new UnsupportedOperationException(s"preceding on $f") | ||
} | ||
new WindowFunctionDefinition(column, partitionSpec, orderSpec, newFrame) | ||
} | ||
|
||
/** | ||
* Returns a new [[WindowFunctionDefinition]], with range of following position specified. | ||
* For a Ranged [[WindowFunctionDefinition]], the range is [unspecified, CURRENT_ROW + n] | ||
* For a Fixed Row [[WindowFunctionDefinition]], the range as [CURRENT_ROW, CURRENT_ROW + n]. | ||
* For example: | ||
* {{{ | ||
* // The range is [CURRENT_ROW, CURRENT_ROW + 1] | ||
* df.over.partitionBy("k1").orderBy($"k2", $"k3").row.following(1) | ||
* // The range [previous lower bound, CURRENT_ROW + 1] | ||
* df.over.partitionBy("k1").orderBy($"k2", $"k3").between.following(1) | ||
* }}} | ||
* If n equals 0, it will be considered as CURRENT_ROW | ||
* @group window_funcs | ||
*/ | ||
def following(n: Int): WindowFunctionDefinition = { | ||
val newFrame = frame match { | ||
case f @ SpecifiedWindowFrame(RowFrame, _, _) if n == 0 => // TODO should we need this? | ||
f.copy(frameStart = CurrentRow, frameEnd = CurrentRow) | ||
case f @ SpecifiedWindowFrame(RowFrame, _, _) => | ||
f.copy(frameStart = CurrentRow, frameEnd = ValueFollowing(n)) | ||
case f @ SpecifiedWindowFrame(RangeFrame, _, _) if n == 0 => f.copy(frameEnd = CurrentRow) | ||
case f @ SpecifiedWindowFrame(RangeFrame, _, _) => f.copy(frameEnd = ValuePreceding(n)) | ||
case f => throw new UnsupportedOperationException(s"following on $f") | ||
} | ||
new WindowFunctionDefinition(column, partitionSpec, orderSpec, newFrame) | ||
} | ||
|
||
/** | ||
* Convert the window definition into a new Column. | ||
* Currently, only aggregate expressions are supported for window function. For Example: | ||
* {{{ | ||
* df.select( | ||
* avg("value") | ||
* .over | ||
* .partitionBy("k1") | ||
* .orderBy($"k2", $"k3") | ||
* .row | ||
* .following(1) | ||
* .toColumn.as("avg_value"), | ||
* max("value") | ||
* .over | ||
* .partitionBy("k2") | ||
* .orderBy("k3") | ||
* .between | ||
* .preceding(4) | ||
* .following(3) | ||
* .toColumn.as("max_value")) | ||
* }}} | ||
* @group window_funcs | ||
*/ | ||
def toColumn: Column = { | ||
val windowExpr = column.expr match { | ||
case Average(child) => WindowExpression( | ||
UnresolvedWindowFunction("avg", child :: Nil), | ||
WindowSpecDefinition(partitionSpec, orderSpec, frame)) | ||
case Sum(child) => WindowExpression( | ||
UnresolvedWindowFunction("sum", child :: Nil), | ||
WindowSpecDefinition(partitionSpec, orderSpec, frame)) | ||
case Count(child) => WindowExpression( | ||
UnresolvedWindowFunction("count", child :: Nil), | ||
WindowSpecDefinition(partitionSpec, orderSpec, frame)) | ||
case First(child) => WindowExpression( | ||
// TODO this is a hack for Hive UDAF first_value | ||
UnresolvedWindowFunction("first_value", child :: Nil), | ||
WindowSpecDefinition(partitionSpec, orderSpec, frame)) | ||
case Last(child) => WindowExpression( | ||
// TODO this is a hack for Hive UDAF last_value | ||
UnresolvedWindowFunction("last_value", child :: Nil), | ||
WindowSpecDefinition(partitionSpec, orderSpec, frame)) | ||
case Min(child) => WindowExpression( | ||
UnresolvedWindowFunction("min", child :: Nil), | ||
WindowSpecDefinition(partitionSpec, orderSpec, frame)) | ||
case Max(child) => WindowExpression( | ||
UnresolvedWindowFunction("max", child :: Nil), | ||
WindowSpecDefinition(partitionSpec, orderSpec, frame)) | ||
case wf: WindowFunction => WindowExpression( | ||
wf, | ||
WindowSpecDefinition(partitionSpec, orderSpec, frame)) | ||
case aggr: AggregateExpression => | ||
throw new UnsupportedOperationException( | ||
"""Only support Aggregate Functions: | ||
| avg, sum, count, first, last, min, max for now""".stripMargin) | ||
case x => | ||
throw new UnsupportedOperationException(s"We don't support $x in window operation.") | ||
} | ||
new Column(windowExpr) | ||
} | ||
} |
Oops, something went wrong.