This dataset version consists of 10K images with annotations for 7 tasks.
- RGB images
- Semantic segmentation
- 2D bounding boxes
- Instance segmentation
- Motion segmentation
- Previous images
- CAN information
- Lens soiling data and annotations
- Calibration Information
- Dense polygon points for objects
Coming Soon:
- Fisheye sythetic data with semantic annotations
- Lidar and dGPS scenes
To download data or to learn more details about the data, please go here and here.
-
./privous_images/
contains 8234 png files. -
./rgb_images/
contains 8234 png files. -
./rgb_images(test_set)/
contains 1766 png files. -
./train/
:./train/gtLabels/
contains 5000 png files (black)../train/rgbImages/
contains 5000 png files (normal)../train/rgbLabels/
contains 5000 png files (RGB labels).
-
./test/
:./test/gtLabels/
contains 1000 png files (black)../test/rgbImages/
contains 1000 png files (normal)../test/rgbLabels/
contains 1000 png files (RGB labels).
-
./WoodScape_ICCV19/
:Click me
- `~/box_2d_annotations/`: - `box_2d_annotation_info.json` - `~/box_2d_annotations/` contains 8234 txt files. - `~/calibration_data/`: - `calibration_readme.md` - `~/calibration/` contains 8234 json files. - `~/instance_annotations/`: - `~/class_info.json` - `~/instance_annotations/` contains 8234 json files. - `~/motion_annotations/`: - `~/motion_annotation_info.json` - `~/motion_annotations/`: - `~/gtLabels/` contains 8234 png files. - `~/rgbLabels` contains 8234 png files. - `~/semantic_annotations/`: - `seg_annotation_info.json` - `~/semantic_annotations/`: - `~/gtLabels/` contains 8234 png files. - `~/rgbLabels` contains 8234 png files. - `~/soiling_dataset/`: - `~/soiling_annotation_info.json` - `~/vehicle_data/`: - `~/vehicle_info/` contains 8234 json files.
To download data or to learn more details about the data, please go here and here.
Click me to see details
woodscape
│ README.md
│
└───rgb_images
│ │ 00001_[CAM].png
│ │ 00002_[CAM].png
| | ...
│ │
└───previous_images
│ │ 00001_[CAM]_prev.png
│ │ 00002_[CAM]_prev.png
| | ...
│ │
└───semantic_annotations
│ rgbLabels
│ │ 00001_[CAM].png
│ │ 00002_[CAM].png
| | ...
│ gtLabels
│ │ 00001_[CAM].png
│ │ 00002_[CAM].png
| | ...
│ │
└───box_2d_annotations
│ │ 00001_[CAM].png
│ │ 00002_[CAM].png
| | ...
│ │
└───instance_annotations
│ │ 00001_[CAM].json
│ │ 00002_[CAM].json
| | ...
│ │
└───motion_annotations
│ rgbLabels
│ │ 00001_[CAM].png
│ │ 00002_[CAM].png
| | ...
│ gtLabels
│ │ 00001_[CAM].png
│ │ 00002_[CAM].png
| | ...
│ │
└───vehicle_data
│ │ 00001_[CAM].json
│ │ 00002_[CAM].json
| | ...
│ │
│ │
└───calibration_data
│ │ 00001_[CAM].json
│ │ 00002_[CAM].json
| | ...
│ │
└───soiling_dataset
│ rgb_images
│ │ 00001_[CAM].png
│ │ 00002_[CAM].png
| | ...
│ gt_labels
│ │ 00001_[CAM].png
│ │ 00002_[CAM].png
| | ...
│ gt_labels
│ │ 00001_[CAM].png
│ │ 00002_[CAM].png
| | ...
[CAM] :
- FV --> Front CAM
- RV --> Rear CAM
- MVL --> Mirror Left CAM
- MVR --> Mirror Right CAM
To download data or to learn more details about the data, please go here and here.
-
args.py
defines the parser of arguments. -
main.py
defines the main program. -
predict.py
predict labels for testing images and generate output PNG files. -
utils.py
defines appropriate formats of dataset and data loader and pipelines of data augmentation. -
./smpgit/segmentation_models_pytorch/
: socure codes of segmentation_models_pytorch -
visualization.ipynb
: plots of metrics and visualization of predictions
python3 main.py -enc 'efficientnet-b4' -e 100 -d 'cuda:0'
python3 predict.py -Pm '16-02-58-45efficientnet-b4_bs=8_epochs=30'
-
Saravanabalagi Ramachandran, John McDonald, and Ganesh Sistu (2021). Woodscape Fisheye Semantic Segmentation for Autonomous Driving | CVPR 2021 OmniCV Workshop Challenge. https://competitions.codalab.org/competitions/30993.
-
Pavel Yakubovskiy (2020). Segmentation Models Pytorch. GitHub: GitHub repository. https://github.com/qubvel/segmentation_models.pytorch.
-
Jeremy Jordan (2018). Evaluating image segmentation models. https://www.jeremyjordan.me/evaluating-image-segmentation-models/.
-
Chen, L. C., Papandreou, G., Schroff, F., & Adam, H. (2017). Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587.
-
Arunava Chakraborty (2019). PyTorch for Beginners: Semantic Segmentation using torchvision. https://learnopencv.com/pytorch-for-beginners-semantic-segmentation-using-torchvision/.
-
Saurabh Kumar (2020). Semantic hand segmentation using Pytorch. Medium: towards data science. https://towardsdatascience.com/semantic-hand-segmentation-using-pytorch-3e7a0a0386fa.