Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[GPU] Use tile and fuse for matmul after vector distribute by default #19884

Merged
merged 2 commits into from
Feb 3, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 10 additions & 3 deletions compiler/src/iree/compiler/Codegen/LLVMGPU/KernelConfig.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -50,8 +50,8 @@
#define LDBG(X) LLVM_DEBUG(DBGS() << X << "\n")
namespace mlir::iree_compiler {

llvm::cl::opt<bool> clGPUTestTileAndFuseMatmul(
"iree-codegen-llvmgpu-test-tile-and-fuse-matmul",
llvm::cl::opt<bool> clGPUEarlyTileAndFuseMatmul(
"iree-codegen-llvmgpu-early-tile-and-fuse-matmul",
llvm::cl::desc("test the the tile and fuse pipeline for matmul"),
llvm::cl::init(false));

Expand Down Expand Up @@ -2340,7 +2340,7 @@ static LogicalResult setRootConfig(IREE::GPU::TargetAttr target,
LDBG("Tile and fuse data tiled multi_mma config");
return success();
}
if (clGPUTestTileAndFuseMatmul) {
if (clGPUEarlyTileAndFuseMatmul) {
if (succeeded(IREE::GPU::setMatmulLoweringConfig(target, entryPointFn,
computeOp))) {
LDBG("Tile and fuse matmul config");
Expand All @@ -2364,6 +2364,13 @@ static LogicalResult setRootConfig(IREE::GPU::TargetAttr target,
if (succeeded(setVectorDistributionConfig(target, entryPointFn, computeOp))) {
return success();
}
// TODO (nirvedhmeshram, qedawkins) : remove this when tile and fuse backend
// config becomes the default for matmul.
if (succeeded(IREE::GPU::setMatmulLoweringConfig(target, entryPointFn,
computeOp))) {
LDBG("Tile and fuse matmul config after no vector distribute config");
return success();
}

if (auto linalgOp = dyn_cast<linalg::LinalgOp>(computeOp)) {
if (succeeded(setContractConfig(target, entryPointFn, linalgOp))) {
Expand Down
Original file line number Diff line number Diff line change
@@ -1,7 +1,11 @@
// RUN: iree-opt --mlir-print-local-scope --split-input-file --iree-gpu-test-target=gfx942 \
// RUN: --iree-codegen-llvmgpu-test-tile-and-fuse-matmul=true --iree-codegen-llvmgpu-test-tile-and-fuse-vectorize=true \
// RUN: --iree-codegen-llvmgpu-early-tile-and-fuse-matmul=true --iree-codegen-llvmgpu-test-tile-and-fuse-vectorize=true \
// RUN: --iree-codegen-llvmgpu-use-igemm=false \
// RUN: --pass-pipeline="builtin.module(iree-llvmgpu-select-lowering-strategy)" %s | FileCheck %s
// RUN: --pass-pipeline="builtin.module(iree-llvmgpu-select-lowering-strategy)" %s | FileCheck %s --check-prefix=CHECK
//
// RUN: iree-opt --mlir-print-local-scope --split-input-file --iree-gpu-test-target=gfx942 \
// RUN: --iree-codegen-llvmgpu-use-igemm=false \
// RUN: --pass-pipeline="builtin.module(iree-llvmgpu-select-lowering-strategy)" %s | FileCheck %s --check-prefix=LATE

// TODO: This test is still using the legacy LLVMGPU kernel config. This needs
// to be migrated to the rocdl heuristics, but for now is just physically
Expand Down Expand Up @@ -43,6 +47,8 @@ func.func @expanded_matmul_transpose_b(%lhs: tensor<2x64x2048xf16>, %rhs: tensor
// CHECK-SAME: subgroup = [1, 1, 4, 1, 0]
// CHECK-SAME: workgroup = [1, 1, 64, 64, 0]

// LATE: LLVMGPUVectorDistribute

// -----

#map = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d2, d4, d5)>
Expand Down Expand Up @@ -78,6 +84,8 @@ func.func @multi_dim_mma_schedule(%lhs: tensor<10x32x128x16xf16>, %rhs: tensor<4
// CHECK-SAME: subgroup = [2, 2, 1, 1, 0, 0]
// CHECK-SAME: workgroup = [2, 2, 32, 32, 0, 0]

// LATE: LLVMGPUVectorDistribute

// -----

#map = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d0, d1, d3, d5, d6)>
Expand Down Expand Up @@ -115,6 +123,8 @@ func.func @dynamic_multi_dim_mma_schedule(%lhs: tensor<?x6x16x?x16xf16>, %rhs: t
// CHECK-SAME: subgroup = [0, 1, 0, 1, 1, 0, 0]
// CHECK-SAME: workgroup = [1, 2, 1, 16, 32, 0, 0]

// LATE: LLVMGPUVectorDistribute

// -----

func.func @mfma_matmul_1024x1024x1024(%lhs: tensor<1024x1024xf16>, %rhs: tensor<1024x1024xf16>) -> tensor<1024x1024xf32> {
Expand All @@ -140,6 +150,8 @@ func.func @mfma_matmul_1024x1024x1024(%lhs: tensor<1024x1024xf16>, %rhs: tensor<
// CHECK-SAME: subgroup = [4, 4, 0]
// CHECK-SAME: workgroup = [128, 128, 0]

// LATE: LLVMGPUVectorDistribute

// -----

module {
Expand All @@ -160,6 +172,8 @@ module {
// CHECK-SAME: thread = [1, 1, 1, 1, 0, 0, 0]
// CHECK-SAME: workgroup = [1, 1, 1, 64, 0, 0, 0]

// LATE: LLVMGPUVectorDistribute

// -----

module {
Expand All @@ -182,6 +196,8 @@ module {
// CHECK-SAME: thread = [1, 4, 0]
// CHECK-SAME: workgroup = [1, 256, 0]

// LATE: LLVMGPUWarpReduction

// -----

module {
Expand Down Expand Up @@ -275,15 +291,15 @@ func.func @unaligned_to_intrinsic_batched_matmul(%lhs : tensor<12x577x577xf32>,
}
}

// CHECK-LABEL: func.func @unaligned_to_intrinsic_batched_matmul
// CHECK-SAME: #iree_codegen.translation_info<pipeline = LLVMGPUTileAndFuse workgroup_size = [64, 1, 1] subgroup_size = 64
// CHECK-SAME: {gpu_pipeline_options = #iree_gpu.pipeline_options<prefetch_shared_memory = true, no_reduce_shared_memory_bank_conflicts = false, use_igemm_convolution = false>}
// CHECK: linalg.batch_matmul {{.*}}lowering_config = #iree_gpu.lowering_config
// CHECK-SAME: padding = [1, 16, 16, 4]
// CHECK-SAME: promote_operands = [0, 1, 2]
// CHECK-SAME: reduction = [0, 0, 0, 1]
// CHECK-SAME: subgroup = [0, 1, 1, 0]
// CHECK-SAME: workgroup = [1, 16, 16, 0]
// LATE-LABEL: func.func @unaligned_to_intrinsic_batched_matmul
// LATE-SAME: #iree_codegen.translation_info<pipeline = LLVMGPUTileAndFuse workgroup_size = [64, 1, 1] subgroup_size = 64
// LATE-SAME: {gpu_pipeline_options = #iree_gpu.pipeline_options<prefetch_shared_memory = true, no_reduce_shared_memory_bank_conflicts = false, use_igemm_convolution = false>}
// LATE: linalg.batch_matmul {{.*}}lowering_config = #iree_gpu.lowering_config
// LATE-SAME: padding = [1, 16, 16, 4]
// LATE-SAME: promote_operands = [0, 1, 2]
// LATE-SAME: reduction = [0, 0, 0, 1]
// LATE-SAME: subgroup = [0, 1, 1, 0]
// LATE-SAME: workgroup = [1, 16, 16, 0]

// -----

Expand All @@ -302,15 +318,15 @@ func.func @unaligned_matmul_with_two_reduce_dim(%arg0: tensor<196x9x4xf32>, %arg
}
}

// CHECK-LABEL: func.func @unaligned_matmul_with_two_reduce_dim
// CHECK-SAME: {translation_info = #iree_codegen.translation_info<pipeline = LLVMGPUTileAndFuse workgroup_size = [64, 1, 1] subgroup_size = 64
// CHECK: linalg.generic
// CHECK-SAME: {lowering_config = #iree_gpu.lowering_config<{mma_kind = #iree_gpu.mma_layout<MFMA_F32_16x16x4_F32>
// CHECK-SAME: padding = [16, 1, 16, 4]
// CHECK-SAME: promote_operands = [0, 1, 2]
// CHECK-SAME: reduction = [0, 1, 0, 1],
// CHECK-SAME: subgroup = [1, 0, 1, 0],
// CHECK-SAME: workgroup = [16, 0, 16, 0]}
// LATE-LABEL: func.func @unaligned_matmul_with_two_reduce_dim
// LATE-SAME: {translation_info = #iree_codegen.translation_info<pipeline = LLVMGPUTileAndFuse workgroup_size = [64, 1, 1] subgroup_size = 64
// LATE: linalg.generic
// LATE-SAME: {lowering_config = #iree_gpu.lowering_config<{mma_kind = #iree_gpu.mma_layout<MFMA_F32_16x16x4_F32>
// LATE-SAME: padding = [16, 1, 16, 4]
// LATE-SAME: promote_operands = [0, 1, 2]
// LATE-SAME: reduction = [0, 1, 0, 1],
// LATE-SAME: subgroup = [1, 0, 1, 0],
// LATE-SAME: workgroup = [16, 0, 16, 0]}

// -----

Expand All @@ -331,15 +347,15 @@ func.func @unaligned_to_intrinsic_batched_matmul_tiling_check(%lhs : tensor<12x5
// In this unit test, if C promotion is not considered, it will deduce a MMA
// schedule with nTileSize of 16 while in reality it should be 8.

// CHECK-LABEL: func.func @unaligned_to_intrinsic_batched_matmul_tiling_check
// CHECK-SAME: #iree_codegen.translation_info<pipeline = LLVMGPUTileAndFuse workgroup_size = [256, 1, 1] subgroup_size = 64
// CHECK-SAME: {gpu_pipeline_options = #iree_gpu.pipeline_options<prefetch_shared_memory = true, no_reduce_shared_memory_bank_conflicts = false, use_igemm_convolution = false>}
// CHECK: linalg.batch_matmul {{.*}}lowering_config = #iree_gpu.lowering_config
// CHECK-SAME: padding = [1, 16, 512, 4]
// CHECK-SAME: promote_operands = [0, 1, 2]
// CHECK-SAME: reduction = [0, 0, 0, 1]
// CHECK-SAME: subgroup = [0, 1, 8, 0]
// CHECK-SAME: workgroup = [1, 16, 512, 0]
// LATE-LABEL: func.func @unaligned_to_intrinsic_batched_matmul_tiling_check
// LATE-SAME: #iree_codegen.translation_info<pipeline = LLVMGPUTileAndFuse workgroup_size = [256, 1, 1] subgroup_size = 64
// LATE-SAME: {gpu_pipeline_options = #iree_gpu.pipeline_options<prefetch_shared_memory = true, no_reduce_shared_memory_bank_conflicts = false, use_igemm_convolution = false>}
// LATE: linalg.batch_matmul {{.*}}lowering_config = #iree_gpu.lowering_config
// LATE-SAME: padding = [1, 16, 512, 4]
// LATE-SAME: promote_operands = [0, 1, 2]
// LATE-SAME: reduction = [0, 0, 0, 1]
// LATE-SAME: subgroup = [0, 1, 8, 0]
// LATE-SAME: workgroup = [1, 16, 512, 0]

// -----

Expand Down
Loading