Skip to content

Add barrier_on_logical_device for synchronizations #842

Add barrier_on_logical_device for synchronizations

Add barrier_on_logical_device for synchronizations #842

Workflow file for this run

# Copyright 2024 The IREE Authors
#
# Licensed under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
name: "TK CI"
on:
workflow_dispatch:
pull_request:
push:
branches:
- main
concurrency:
# A PR number if a pull request and otherwise the commit hash. This cancels
# queued and in-progress runs for the same PR (presubmit) or commit
# (postsubmit). The workflow name is prepended to avoid conflicts between
# different workflows.
group: ${{ github.workflow }}-${{ github.event.number || github.sha }}
cancel-in-progress: true
jobs:
test:
name: "Unit Tests and Type Checking"
strategy:
fail-fast: false
matrix:
version: [3.11]
os: [ubuntu-22.04, nodai-amdgpu-mi300-x86-64, nodai-amdgpu-mi250-x86-64]
runs-on: ${{matrix.os}}
env:
VENV_DIR: ${{ github.workspace }}/.turbine-venv
steps:
- uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
- name: "Setting up Python"
id: setup_python
uses: actions/setup-python@0b93645e9fea7318ecaed2b359559ac225c90a2b # v5.3.0
with:
python-version: ${{matrix.version}}
- name: Create Python venv
run: |
python -m venv ${VENV_DIR}
source ${VENV_DIR}/bin/activate
echo VIRTUAL_ENV=$VIRTUAL_ENV >> "$GITHUB_ENV"
echo "$VENV_DIR/bin" >> "$GITHUB_PATH"
- name: Install pip deps
if: "!contains(matrix.os, 'amdgpu') && !cancelled()"
run: |
python -m pip install --no-compile --upgrade pip
# Note: We install in three steps in order to satisfy requirements
# from non default locations first. Installing the PyTorch CPU
# wheels saves multiple minutes and a lot of bandwidth on runner setup.
pip install --no-compile -r pytorch-cpu-requirements.txt
pip install --no-cache-dir -r requirements-iree-pinned.txt --upgrade
pip install -r requirements.txt -e .
- name: Install GPU pip deps
if: "contains(matrix.os, 'amdgpu') && !cancelled()"
run: |
python -m pip install --no-compile --upgrade pip
# Note: We install in three steps in order to satisfy requirements
# from non default locations first. Installing the PyTorch CPU
# wheels saves multiple minutes and a lot of bandwidth on runner setup.
pip install --no-compile -r pytorch-rocm-requirements.txt
pip install --no-cache-dir -r requirements-iree-pinned.txt --upgrade
pip install -r requirements.txt -e .
- name: Run unit tests
if: ${{ !cancelled() }}
run: |
pytest -n 4 --capture=tee-sys -vv ./tests/kernel/wave/
- name: Test TKW runtime related stack on amdgpu
if: "contains(matrix.os, 'amdgpu') && !cancelled()"
run: |
export WAVE_CACHE_DIR=$PWD/.wave
rm -rf ./.wave
WAVE_CACHE_ON=1 pytest --capture=tee-sys -vv --run-e2e ./tests/kernel/wave/runtime
- name: Run e2e tests on AMD GPU MI300
if: "contains(matrix.os, 'mi300') && !cancelled()"
run: |
WAVE_CACHE_ON=0 pytest -n 8 --capture=tee-sys -vv --run-e2e --gpu-distribute 8 ./tests/kernel/wave/
- name: Run e2e tests on AMD GPU MI250
if: "contains(matrix.os, 'mi250') && !cancelled()"
run: |
WAVE_CACHE_ON=0 pytest -n 2 --capture=tee-sys --run-e2e -vv ./tests/kernel/wave/
- name: Run LIT tests
if: ${{ !cancelled() }}
run: |
lit lit_tests/ -v
- name: MyPy Type Checking
if: ${{ !cancelled() }}
run: |
mypy