Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update README #10111

Merged
merged 8 commits into from
Feb 6, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 6 additions & 5 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -12,18 +12,19 @@
> *It is built on the excellent work of [llama.cpp](https://github.com/ggerganov/llama.cpp), [bitsandbytes](https://github.com/TimDettmers/bitsandbytes), [qlora](https://github.com/artidoro/qlora), [gptq](https://github.com/IST-DASLab/gptq), [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ), [awq](https://github.com/mit-han-lab/llm-awq), [AutoAWQ](https://github.com/casper-hansen/AutoAWQ), [vLLM](https://github.com/vllm-project/vllm), [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), [gptq_for_llama](https://github.com/qwopqwop200/GPTQ-for-LLaMa), [chatglm.cpp](https://github.com/li-plus/chatglm.cpp), [redpajama.cpp](https://github.com/togethercomputer/redpajama.cpp), [gptneox.cpp](https://github.com/byroneverson/gptneox.cpp), [bloomz.cpp](https://github.com/NouamaneTazi/bloomz.cpp/), etc.*

### Latest update 🔥
- [2024/02] `bigdl-llm` now supports *[Self-Speculative Decoding](https://bigdl.readthedocs.io/en/main/doc/LLM/Inference/Self_Speculative_Decoding.html)*, which in practice brings **~30% speedup** for FP16 and BF16 inference latency on Intel [GPU](python/llm/example/GPU/Speculative-Decoding) and [CPU](python/llm/example/CPU/Speculative-Decoding) respectively
- [2024/02] `bigdl-llm` now supports a comprehensive list of LLM finetuning on Intel GPU (including [LoRA](python/llm/example/GPU/LLM-Finetuning/LoRA), [QLoRA](python/llm/example/GPU/LLM-Finetuning/QLoRA), [DPO](python/llm/example/GPU/LLM-Finetuning/DPO), [QA-LoRA](python/llm/example/GPU/LLM-Finetuning/QA-LoRA) and [ReLoRA](python/llm/example/GPU/LLM-Finetuning/ReLora))
- [2024/02] `bigdl-llm` now supports *[Self-Speculative Decoding](https://bigdl.readthedocs.io/en/main/doc/LLM/Inference/Self_Speculative_Decoding.html)*, which in practice brings **~30% speedup** for FP16 and BF16 inference latency on Intel [GPU](python/llm/example/GPU/Speculative-Decoding) and [CPU](python/llm/example/CPU/Speculative-Decoding) respectively.
- [2024/02] `bigdl-llm` now supports a comprehensive list of LLM finetuning on Intel GPU (including [LoRA](python/llm/example/GPU/LLM-Finetuning/LoRA), [QLoRA](python/llm/example/GPU/LLM-Finetuning/QLoRA), [DPO](python/llm/example/GPU/LLM-Finetuning/DPO), [QA-LoRA](python/llm/example/GPU/LLM-Finetuning/QA-LoRA) and [ReLoRA](python/llm/example/GPU/LLM-Finetuning/ReLora)).
- [2024/01] Using `bigdl-llm` [QLoRA](python/llm/example/GPU/LLM-Finetuning/QLoRA), we managed to finetune LLaMA2-7B in **21 minutes** and LLaMA2-70B in **3.14 hours** on 8 Intel Max 1550 GPU for [Standford-Alpaca](python/llm/example/GPU/LLM-Finetuning/QLoRA/alpaca-qlora) (see the blog [here](https://www.intel.com/content/www/us/en/developer/articles/technical/finetuning-llms-on-intel-gpus-using-bigdl-llm.html)).
- [2024/01] 🔔🔔🔔 ***The default `bigdl-llm` GPU Linux installation has switched from PyTorch 2.0 to PyTorch 2.1, which requires new oneAPI and GPU driver versions. (See the [GPU installation guide](https://bigdl.readthedocs.io/en/latest/doc/LLM/Overview/install_gpu.html) for more details.)***
- [2023/12] `bigdl-llm` now supports [ReLoRA](python/llm/example/GPU/LLM-Finetuning/ReLora) (see *["ReLoRA: High-Rank Training Through Low-Rank Updates"](https://arxiv.org/abs/2307.05695)*)
- [2023/12] `bigdl-llm` now supports [ReLoRA](python/llm/example/GPU/LLM-Finetuning/ReLora) (see *["ReLoRA: High-Rank Training Through Low-Rank Updates"](https://arxiv.org/abs/2307.05695)*).
- [2023/12] `bigdl-llm` now supports [Mixtral-8x7B](python/llm/example/GPU/HF-Transformers-AutoModels/Model/mixtral) on both Intel [GPU](python/llm/example/GPU/HF-Transformers-AutoModels/Model/mixtral) and [CPU](python/llm/example/CPU/HF-Transformers-AutoModels/Model/mixtral).
- [2023/12] `bigdl-llm` now supports [QA-LoRA](python/llm/example/GPU/LLM-Finetuning/QA-LoRA) (see *["QA-LoRA: Quantization-Aware Low-Rank Adaptation of Large Language Models"](https://arxiv.org/abs/2309.14717)*)
- [2023/12] `bigdl-llm` now supports [QA-LoRA](python/llm/example/GPU/LLM-Finetuning/QA-LoRA) (see *["QA-LoRA: Quantization-Aware Low-Rank Adaptation of Large Language Models"](https://arxiv.org/abs/2309.14717)*).
- [2023/12] `bigdl-llm` now supports [FP8 and FP4 inference](python/llm/example/GPU/HF-Transformers-AutoModels/More-Data-Types) on Intel ***GPU***.
- [2023/11] Initial support for directly loading [GGUF](python/llm/example/GPU/HF-Transformers-AutoModels/Advanced-Quantizations/GGUF), [AWQ](python/llm/example/GPU/HF-Transformers-AutoModels/Advanced-Quantizations/AWQ) and [GPTQ](python/llm/example/GPU/HF-Transformers-AutoModels/Advanced-Quantizations/GPTQ) models into `bigdl-llm` is available.
- [2023/11] `bigdl-llm` now supports [vLLM continuous batching](python/llm/example/GPU/vLLM-Serving) on both Intel [GPU](python/llm/example/GPU/vLLM-Serving) and [CPU](python/llm/example/CPU/vLLM-Serving).
- [2023/10] `bigdl-llm` now supports [QLoRA finetuning](python/llm/example/GPU/LLM-Finetuning/QLoRA) on both Intel [GPU](python/llm/example/GPU/LLM-Finetuning/QLoRA) and [CPU](python/llm/example/CPU/QLoRA-FineTuning).
- [2023/10] `bigdl-llm` now supports [FastChat serving](python/llm/src/bigdl/llm/serving) on on both Intel CPU and GPU.
- [2023/09] `bigdl-llm` now supports [Intel GPU](python/llm/example/GPU) (including Arc, Flex and MAX)
- [2023/09] `bigdl-llm` now supports [Intel GPU](python/llm/example/GPU) (including iGPU, Arc, Flex and MAX).
- [2023/09] `bigdl-llm` [tutorial](https://github.com/intel-analytics/bigdl-llm-tutorial) is released.
- [2023/09] Over 30 models have been optimized/verified on `bigdl-llm`, including *LLaMA/LLaMA2, ChatGLM2/ChatGLM3, Mistral, Falcon, MPT, LLaVA, WizardCoder, Dolly, Whisper, Baichuan/Baichuan2, InternLM, Skywork, QWen/Qwen-VL, Aquila, MOSS,* and more; see the complete list [here](#verified-models).

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ In [speculative](https://arxiv.org/abs/2302.01318) [decoding](https://arxiv.org/
Built on top of the concept of “[self-speculative decoding](https://arxiv.org/abs/2309.08168)”, BigDL-LLM can now accelerate the original FP16 or BF16 model ***without the need of a separate draft model or model finetuning***; instead, it automatically converts the original model to INT4, and uses the INT4 model as the draft model behind the scene. In practice, this brings ***~30% speedup*** for FP16 and BF16 LLM inference latency on Intel GPU and CPU respectively.

### Using BigDL-LLM Self-Speculative Decoding
Please refer to BigDL-LLM self-speculative decoding code snippets below, and the complete [GPU](https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU/Speculative-Decoding) and [CPU](https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/CPU/Speculative-Decoding) examples in the project repo.
Please refer to BigDL-LLM self-speculative decoding code snippets below, and the detailed [GPU](https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU/Speculative-Decoding) and [CPU](https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/CPU/Speculative-Decoding) examples in the project repo.

```python
model = AutoModelForCausalLM.from_pretrained(model_path,
Expand Down
7 changes: 4 additions & 3 deletions docs/readthedocs/source/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -24,10 +24,11 @@ BigDL-LLM: low-Bit LLM library
============================================
Latest update 🔥
============================================
- [2024/02] ``bigdl-llm`` now supports `Self-Speculative Decoding <doc/LLM/Inference/Self_Speculative_Decoding.html>`_, which in practice brings **~30% speedup** for FP16 and BF16 inference latency on Intel `GPU <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU/Speculative-Decoding>`_ and `CPU <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/CPU/Speculative-Decoding>`_ respectively
- [2024/02] ``bigdl-llm`` now supports a comprehensive list of LLM finetuning on Intel GPU (including `LoRA <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU/LLM-Finetuning/LoRA>`_, `QLoRA <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU/LLM-Finetuning/QLoRA>`_, `DPO <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU/LLM-Finetuning/DPO>`_, `QA-LoRA <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU/LLM-Finetuning/QA-LoRA>`_ and `ReLoRA <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU/LLM-Finetuning/ReLora>`_)
- [2024/02] ``bigdl-llm`` now supports `Self-Speculative Decoding <doc/LLM/Inference/Self_Speculative_Decoding.html>`_, which in practice brings **~30% speedup** for FP16 and BF16 inference latency on Intel `GPU <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU/Speculative-Decoding>`_ and `CPU <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/CPU/Speculative-Decoding>`_ respectively.
- [2024/02] ``bigdl-llm`` now supports a comprehensive list of LLM finetuning on Intel GPU (including `LoRA <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU/LLM-Finetuning/LoRA>`_, `QLoRA <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU/LLM-Finetuning/QLoRA>`_, `DPO <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU/LLM-Finetuning/DPO>`_, `QA-LoRA <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU/LLM-Finetuning/QA-LoRA>`_ and `ReLoRA <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU/LLM-Finetuning/ReLora>`_).
- [2024/01] Using ``bigdl-llm`` `QLoRA <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU/LLM-Finetuning/QLoRA>`_, we managed to finetune LLaMA2-7B in **21 minutes** and LLaMA2-70B in **3.14 hours** on 8 Intel Max 1550 GPU for `Standford-Alpaca <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU/LLM-Finetuning/QLoRA/alpaca-qlora>`_ (see the blog `here <https://www.intel.com/content/www/us/en/developer/articles/technical/finetuning-llms-on-intel-gpus-using-bigdl-llm.html>`_).
- [2024/01] 🔔🔔🔔 **The default** ``bigdl-llm`` **GPU Linux installation has switched from PyTorch 2.0 to PyTorch 2.1, which requires new oneAPI and GPU driver versions. (See the** `GPU installation guide <https://bigdl.readthedocs.io/en/latest/doc/LLM/Overview/install_gpu.html>`_ **for more details.)**
- [2023/12] ``bigdl-llm`` now supports `ReLoRA <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU/LLM-Finetuning/ReLora>`_ (see `"ReLoRA: High-Rank Training Through Low-Rank Updates" <https://arxiv.org/abs/2307.05695>`_)
- [2023/12] ``bigdl-llm`` now supports `ReLoRA <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU/LLM-Finetuning/ReLora>`_ (see `"ReLoRA: High-Rank Training Through Low-Rank Updates" <https://arxiv.org/abs/2307.05695>`_).
- [2023/12] ``bigdl-llm`` now supports `Mixtral-8x7B <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/Model/mixtral>`_ on both Intel `GPU <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/Model/mixtral>`_ and `CPU <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/CPU/HF-Transformers-AutoModels/Model/mixtral>`_.
- [2023/12] ``bigdl-llm`` now supports `QA-LoRA <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU/LLM-Finetuning/QA-LoRA>`_ (see `"QA-LoRA: Quantization-Aware Low-Rank Adaptation of Large Language Models" <https://arxiv.org/abs/2309.14717>`_).
- [2023/12] ``bigdl-llm`` now supports `FP8 and FP4 inference <https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU/HF-Transformers-AutoModels/More-Data-Types>`_ on Intel **GPU**.
Expand Down