- The goal is to redesign retrieval/reranker benchmark evaluation projects lightweight, with minimal dependencies, that runs effortlessly and delivers immediate results.
- 벤치마크 결과는 README.md 에서 확인하세요.
- The target language is Korean at this moment.
- AutoRAG (DATATYPE_NAME=AutoRAG)
- (planned, not yet) KURE
- HuggingFace Reranker
MODEL_CLASS=huggingface
- FlagReranker
MODEL_CLASS=flagreranker
- e.g.
BAAI/bge-reranker-v2-m3
- e.g.
- FlagLLMReranker
MODEL_CLASS=flagllmreranker
- e.g.
BAAI/bge-reranker-v2-gemma
- e.g.
- FlagLayerwiseReranker
MODEL_CLASS=flaglayerwise
- e.g.
BAAI/bge-reranker-v2.5-gemma2-lightweight
- e.g.
- (planned, not yet) HuggingFace & FlagEmbedding supported bi-encoder
make init
# single GPU only at the moment.
make run TYPE=cross-encoder MODEL_NAME=sigridjineth/ko-reranker-v1.1 MODEL_CLASS=huggingface DATATYPE_NAME=AutoRAG
make run TYPE=cross-encoder MODEL_NAME=BAAI/bge-reranker-v2-m3 MODEL_CLASS=flagreranker DATATYPE_NAME=AutoRAG
make run MODEL_NAME=BAAI/bge-reranker-v2-gemma MODEL_CLASS=flagllmreranker
This project welcomes contributions and suggestions. See issues if you consider doing any.
When you submit a pull request, please make sure that you should run formatter by make format && make check
, please.