Skip to content

Commit

Permalink
Merge pull request #94 from inbo/090_vissen
Browse files Browse the repository at this point in the history
090 vissen
  • Loading branch information
joost-vanoverbeke authored Oct 7, 2024
2 parents c8fb4f5 + 63f58ef commit 9df3bd5
Show file tree
Hide file tree
Showing 14 changed files with 9,181 additions and 0 deletions.
268 changes: 268 additions & 0 deletions moneos_2024/090_vissen/10_moneos_visdata_VIS_fuiken.Rmd
Original file line number Diff line number Diff line change
@@ -0,0 +1,268 @@
---
params:
hoofdstuk: "090_vissen"
knit: (function(inputFile, encoding) {
rmarkdown::render(inputFile,
encoding=encoding,
output_dir = paste0(rmarkdown::yaml_front_matter(inputFile)$params$hoofdstuk,
"/output")
)})

title: "visdata fuiken"
output:
bookdown::word_document2: default
---


```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = FALSE, error=FALSE, warning=FALSE, message=FALSE, cache=FALSE)
```


```{r libraries}
library(tidyverse)
library(lubridate)
library(readxl)
library(writexl)
library(inbodb)
library(rprojroot) ## workaround pad
```


```{r pad}
# inlezen van variabelen
# pad naar data : pad_data
# pad naar tabellen : pad_tabellen
# pad naar figuren : pad_figuren
run_pad <- function() {
source(find_root_file("../pad.R", criterion = is_rstudio_project))
pad_data <- maak_pad(params$hoofdstuk, "data")
pad_figuren <- maak_pad(params$hoofdstuk, "figuren")
pad_tabellen <- maak_pad(params$hoofdstuk, "tabellen")
# print(ls())
sapply(ls(), function(x) assign(x, get(x), .GlobalEnv))
}
run_pad()
```


```{r variabelen}
run_variabelen <-
function() {
jaren <- as.numeric(jaar_moneos) - 1
vangstmethode <- c('Schietfuik')
# Zeeschelde vissen
locaties_name <- "fuikvangsten_Zeeschelde_locaties"
metadata_name <- "fuikvangsten_Zeeschelde_metadata"
filename <- "fuikdata_Zeeschelde"
# zijrivieren vissen
# locaties_name <- "fuikvangsten_zijrivieren_locaties"
# metadata_name <- "fuikvangsten_zijrivieren_metadata"
# filename <- "fuikdata_zijrivieren"
locaties <-
read_xlsx(str_c(pad_data, "metadata VLIZ/", locaties_name, ".xlsx"))
locatie_nrs <- locaties$locatiecode %>% as.character()
locatie_namen <- locaties$locatie
# print(ls())
sapply(ls(), function(x) assign(x, get(x), .GlobalEnv))
}
run_variabelen()
```


```{r connectie met databank}
VIS2 <- connect_inbo_dbase("D0147_00_Vis2")
VIS <- connect_inbo_dbase("W0001_00_Vis")
```


```{r bevragen databank}
FactMeting_Pivot <-
tbl(VIS, "FactMeting_Pivot")
DimWaarneming <-
tbl(VIS, "DimWaarneming")
DimGebied <-
tbl(VIS, "DimGebied")
DimGebiedInfo <-
tbl(VIS, "DimGebiedInfo")
DimTaxon <-
tbl(VIS, "DimTaxon")
DimVisindexTaxon <-
tbl(VIS, "DimVisindexTaxon")
DimMethode <-
tbl(VIS, "DimMethode")
DimDate <-
tbl(VIS, "DimDate")
# Vispunten <-
# tbl(VIS2, "Vispunten")
# VHAVispunten <-
# tbl(VIS2, "VHAVispunten")
AbiotischeMeting <-
tbl(VIS2, "AbiotischeMeting")
tbl_campagnes <-
DimWaarneming %>%
inner_join(DimGebied,
by = "GebiedKey") %>%
inner_join(DimDate, by = c("BeginDatumKey" = "DateKey")) %>%
inner_join(DimMethode, by = "MethodeKey") %>%
filter(Year %in% jaren,
Gebiedcode %in% locatie_nrs
# ,
# Methodenaam %in% vangstmethode
) %>%
select(WaarnemingKey, WaarnemingID, GebiedKey, Gebiedcode, LambertX, LambertY, Lat, Long, Gebiednaam, Gemeentenaam, Begindatum, Month, Year, MethodeKey, Methodenaam, Methodegroepcode, AantalDagen, AantalFuiken)
tbl_data <-
FactMeting_Pivot %>%
right_join(DimWaarneming %>%
inner_join(DimGebied,
by = "GebiedKey") %>%
inner_join(DimDate, by = c("BeginDatumKey" = "DateKey")),
by = "WaarnemingKey") %>%
inner_join(DimTaxon %>%
left_join(DimVisindexTaxon %>% select(TaxonKey, Exoot)),
by = "TaxonKey") %>%
inner_join(DimMethode, by = "MethodeKey") %>%
select(MetingPivotKey, WaarnemingKey, WaarnemingID,
GebiedKey, Gebiedcode, LambertX, LambertY, Lat, Long, Gebiednaam, Gemeentenaam,
Begindatum, Month, Year,
MethodeKey, Methodenaam, Methodegroepcode, AantalDagen, AantalFuiken,
TaxonKey, Soort, WetenschappelijkeNaam, Exoot,
TAXONAANTAL, TAXONGEW, TAXONTOTGEW, TAXONLEN,
TEMPERATUUR, ZUURSTOF, TURBIDITEIT, CONDUCTIVITEIT, PH) %>%
filter(Year %in% jaren,
Gebiedcode %in% locatie_nrs
# ,
# Methodenaam %in% vangstmethode
)
(gebied_codes <-
tbl_data %>%
distinct(Gebiedcode) %>%
collect() %>%
pull())
waarneming_IDs <-
tbl_data %>%
distinct(WaarnemingID) %>%
collect() %>%
pull()
# tbl_locatie_gegevens <-
# Vispunten %>%
# inner_join(VHAVispunten, by = c("VIP_ID" = "VHP_VIP_ID")) %>%
# select(VIP_CDE, VIP_Omschrijving, VHP_LOTIC_NAAM, VHP_LOTIC_BekNaam, VHP_LOTIC_STROOMGEBIED, VHP_GEMEENTE) %>%
# filter(VIP_CDE %in% gebied_codes)
tbl_abiotiek <-
AbiotischeMeting %>%
select(ABME_WRNG_ID, ABME_ZUURSTOF, ABME_ZUURSTOFPROCENT, ABME_TEMPERATUUR, ABME_PH, ABME_CONDUCTIVITEIT, ABME_TURBIDITEIT, ABME_SALINITEIT_PRM) %>%
filter(ABME_WRNG_ID %in% waarneming_IDs)
data <-
tbl_data %>%
collect() %>%
# left_join(tbl_locatie_gegevens %>% collect(), by = c("Gebiedcode" = "VIP_CDE")) %>%
left_join(tbl_abiotiek %>% collect(), by = c("WaarnemingID" = "ABME_WRNG_ID"))
campagnes <-
tbl_campagnes %>%
collect() %>%
# left_join(tbl_locatie_gegevens %>% collect(), by = c("Gebiedcode" = "VIP_CDE")) %>%
left_join(tbl_abiotiek %>% collect(), by = c("WaarnemingID" = "ABME_WRNG_ID"))
soorten <-
data %>%
distinct(Soort, WetenschappelijkeNaam, Exoot)
data <-
data %>%
select(-WetenschappelijkeNaam)
```


```{r sluiten databank}
dbDisconnect(VIS)
dbDisconnect(VIS2)
```


```{r hervariabel, ref.label=c('pad', 'variabelen')}
rm(list = ls()[-which(ls() %in% c("data", "campagnes", "soorten", "params", "run_pad", "run_variabelen"))])
run_pad()
run_variabelen()
```


```{r opslaan ruwe data fuiken}
write_xlsx(list(campagnes = campagnes,
soorten = soorten,
data = data),
path = str_c(pad_data, filename, "_ruw_VIS_", str_c(unique(range(jaren)), collapse = "_"), ".xlsx"))
```


```{r check campagnes, eval=FALSE}
campagnes <-
read_xlsx(sheet = "campagnes",
path = str_c(pad_data, filename, "_ruw_VIS_", str_c(unique(range(jaren)), collapse = "_"), ".xlsx"))
data <-
read_xlsx(sheet = "data",
path = str_c(pad_data, filename, "_ruw_VIS_", str_c(unique(range(jaren)), collapse = "_"), ".xlsx"))
campagnes_dstnct <-
campagnes %>%
distinct(Gebiedcode, Gebiednaam, Begindatum, Month, Year, Methodenaam)
campagnes_dstnct2 <-
data %>%
distinct(Gebiedcode, Gebiednaam, Begindatum, Month, Year, Methodenaam)
(sd <- setdiff(campagnes_dstnct, campagnes_dstnct2))
campagnes_dstnct %>%
distinct(Gebiedcode, Gebiednaam)
```

Loading

0 comments on commit 9df3bd5

Please sign in to comment.