Perform Hyperparameter tuning on a small Regression problem using TensorFlow 2
- Setup environment variables
export REGION=us-central1
export PROJECT_ID=$(gcloud config list project --format "value(core.project)")
export IMAGE_REPO_NAME=gcp-vertex-ai-hyperparameter-tuning-tf
export IMAGE_NAME=gcp-vertex-ai-hyperparameter-tuning-tf
export IMAGE_TAG=latest
export IMAGE_URI=$REGION-docker.pkg.dev/$PROJECT_ID/$IMAGE_REPO_NAME/$IMAGE_NAME:$IMAGE_TAG
gcloud auth configure-docker $REGION-docker.pkg.dev
- Build Docker image
docker build -f Dockerfile -t $IMAGE_URI ./
- Push the Docker image to GCP artifacts registry
docker push $IMAGE_URI
- Prepare hyperparameter tuning config file
In the hptuning_config.yaml
you add the parameters to optimize with your hyperparameter tuning and provide arguments to your code as hyperparameters that will be used to optimize. You can also specify the job submission details like parallel jobs to run and how many jobs to run.
- Training with hyperparameter tuning on the Vertex AI platform from Docker image
Initialize input variables
export JOB_NAME=hyperparameter_tuning_example
Submit the jobs
gcloud ai hp-tuning-jobs create --region $REGION --config hptuning_config.yaml --project=$PROJECT_ID --display-name=$JOB_NAME