Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add DistributionsAD #24

Merged
merged 1 commit into from
Nov 28, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@ ComputationalResources = "ed09eef8-17a6-5b46-8889-db040fac31e3"
DataFrames = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0"
DiffEqSensitivity = "41bf760c-e81c-5289-8e54-58b1f1f8abe2"
Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
DistributionsAD = "ced4e74d-a319-5a8a-b0ac-84af2272839c"
Flux = "587475ba-b771-5e3f-ad9e-33799f191a9c"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
MLJBase = "a7f614a8-145f-11e9-1d2a-a57a1082229d"
Expand All @@ -17,6 +18,7 @@ MLJModelInterface = "e80e1ace-859a-464e-9ed9-23947d8ae3ea"
OrdinaryDiffEq = "1dea7af3-3e70-54e6-95c3-0bf5283fa5ed"
Parameters = "d96e819e-fc66-5662-9728-84c9c7592b0a"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
SciMLBase = "0bca4576-84f4-4d90-8ffe-ffa030f20462"
ScientificTypes = "321657f4-b219-11e9-178b-2701a2544e81"
Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f"
Expand Down
2 changes: 2 additions & 0 deletions src/ICNF.jl
Original file line number Diff line number Diff line change
Expand Up @@ -6,12 +6,14 @@ module ICNF
DataFrames,
DiffEqSensitivity,
Distributions,
DistributionsAD,
Flux,
MLJBase,
MLJFlux,
MLJModelInterface,
OrdinaryDiffEq,
Parameters,
SciMLBase,
ScientificTypes,
Zygote,
LinearAlgebra,
Expand Down
12 changes: 6 additions & 6 deletions src/ffjord.jl
Original file line number Diff line number Diff line change
Expand Up @@ -13,11 +13,11 @@ Implementations of FFJORD from
basedist::Distribution = MvNormal(zeros(T, nvars), Diagonal(ones(T, nvars)))
tspan::Tuple{T, T} = convert.(T, (0, 1))

solver_test::OrdinaryDiffEqAlgorithm = default_solver_test
solver_train::OrdinaryDiffEqAlgorithm = default_solver_train
solver_test::SciMLBase.AbstractODEAlgorithm = default_solver_test
solver_train::SciMLBase.AbstractODEAlgorithm = default_solver_train

sensealg_test::SciMLBase.AbstractSensitivityAlgorithm = default_sensealg
sensealg_train::SciMLBase.AbstractSensitivityAlgorithm = sensealg_test
sensealg_train::SciMLBase.AbstractSensitivityAlgorithm = default_sensealg

acceleration::AbstractResource = default_acceleration

Expand All @@ -32,11 +32,11 @@ function FFJORD{T}(
basedist::Distribution=MvNormal(zeros(T, nvars), Diagonal(ones(T, nvars))),
tspan::Tuple{T, T}=convert.(T, (0, 1)),

solver_test::OrdinaryDiffEqAlgorithm=default_solver_test,
solver_train::OrdinaryDiffEqAlgorithm=default_solver_train,
solver_test::SciMLBase.AbstractODEAlgorithm=default_solver_test,
solver_train::SciMLBase.AbstractODEAlgorithm=default_solver_train,

sensealg_test::SciMLBase.AbstractSensitivityAlgorithm=default_sensealg,
sensealg_train::SciMLBase.AbstractSensitivityAlgorithm=sensealg_test,
sensealg_train::SciMLBase.AbstractSensitivityAlgorithm=default_sensealg,

acceleration::AbstractResource=default_acceleration,
) where {T <: AbstractFloat}
Expand Down
12 changes: 6 additions & 6 deletions src/rnode.jl
Original file line number Diff line number Diff line change
Expand Up @@ -13,11 +13,11 @@ Implementations of RNODE from
basedist::Distribution = MvNormal(zeros(T, nvars), Diagonal(ones(T, nvars)))
tspan::Tuple{T, T} = convert.(T, (0, 1))

solver_test::OrdinaryDiffEqAlgorithm = default_solver_test
solver_train::OrdinaryDiffEqAlgorithm = default_solver_train
solver_test::SciMLBase.AbstractODEAlgorithm = default_solver_test
solver_train::SciMLBase.AbstractODEAlgorithm = default_solver_train

sensealg_test::SciMLBase.AbstractSensitivityAlgorithm = default_sensealg
sensealg_train::SciMLBase.AbstractSensitivityAlgorithm = sensealg_test
sensealg_train::SciMLBase.AbstractSensitivityAlgorithm = default_sensealg

acceleration::AbstractResource = default_acceleration

Expand All @@ -32,11 +32,11 @@ function RNODE{T}(
basedist::Distribution=MvNormal(zeros(T, nvars), Diagonal(ones(T, nvars))),
tspan::Tuple{T, T}=convert.(T, (0, 1)),

solver_test::OrdinaryDiffEqAlgorithm=default_solver_test,
solver_train::OrdinaryDiffEqAlgorithm=default_solver_train,
solver_test::SciMLBase.AbstractODEAlgorithm=default_solver_test,
solver_train::SciMLBase.AbstractODEAlgorithm=default_solver_train,

sensealg_test::SciMLBase.AbstractSensitivityAlgorithm=default_sensealg,
sensealg_train::SciMLBase.AbstractSensitivityAlgorithm=sensealg_test,
sensealg_train::SciMLBase.AbstractSensitivityAlgorithm=default_sensealg,

acceleration::AbstractResource=default_acceleration,
) where {T <: AbstractFloat}
Expand Down
20 changes: 10 additions & 10 deletions test/ffjord.jl
Original file line number Diff line number Diff line change
Expand Up @@ -3,28 +3,28 @@
cr in [CPU1(), CUDALibs()],
tp in [Float64, Float32, Float16],
nvars in 1:3
ffjord = FFJORD{tp}(Dense(nvars, nvars), nvars; acceleration=cr)
ufd = copy(ffjord.p)
icnf = FFJORD{tp}(Dense(nvars, nvars), nvars; acceleration=cr)
ufd = copy(icnf.p)
n = 8
r = rand(tp, nvars, n)

@test !isnothing(inference(ffjord, TestMode(), r))
@test !isnothing(inference(ffjord, TrainMode(), r))
@test !isnothing(inference(icnf, TestMode(), r))
@test !isnothing(inference(icnf, TrainMode(), r))

@test !isnothing(generate(ffjord, TestMode(), n))
@test !isnothing(generate(ffjord, TrainMode(), n))
@test !isnothing(generate(icnf, TestMode(), n))
@test !isnothing(generate(icnf, TrainMode(), n))

@test !isnothing(ffjord(r))
@test !isnothing(loss_f(ffjord)(r))
@test !isnothing(icnf(r))
@test !isnothing(loss_f(icnf)(r))

d = ICNFDistribution(; m=ffjord)
d = ICNFDistribution(; m=icnf)

@test !isnothing(logpdf(d, r))
@test !isnothing(pdf(d, r))
@test !isnothing(rand(d, n))

df = DataFrame(r', :auto)
model = ICNFModel(; m=ffjord, n_epochs=8)
model = ICNFModel(; m=icnf, n_epochs=8)
mach = machine(model, df)
fit!(mach)
fd = MLJBase.fitted_params(mach).learned_parameters
Expand Down
20 changes: 10 additions & 10 deletions test/rnode.jl
Original file line number Diff line number Diff line change
Expand Up @@ -3,28 +3,28 @@
cr in [CPU1(), CUDALibs()],
tp in [Float64, Float32, Float16],
nvars in 1:3
rnode = RNODE{tp}(Dense(nvars, nvars), nvars; acceleration=cr)
ufd = copy(rnode.p)
icnf = RNODE{tp}(Dense(nvars, nvars), nvars; acceleration=cr)
ufd = copy(icnf.p)
n = 8
r = rand(tp, nvars, n)

@test !isnothing(inference(rnode, TestMode(), r))
@test !isnothing(inference(rnode, TrainMode(), r))
@test !isnothing(inference(icnf, TestMode(), r))
@test !isnothing(inference(icnf, TrainMode(), r))

@test !isnothing(generate(rnode, TestMode(), n))
@test !isnothing(generate(rnode, TrainMode(), n))
@test !isnothing(generate(icnf, TestMode(), n))
@test !isnothing(generate(icnf, TrainMode(), n))

@test !isnothing(rnode(r))
@test !isnothing(loss_f(rnode)(r))
@test !isnothing(icnf(r))
@test !isnothing(loss_f(icnf)(r))

d = ICNFDistribution(; m=rnode)
d = ICNFDistribution(; m=icnf)

@test !isnothing(logpdf(d, r))
@test !isnothing(pdf(d, r))
@test !isnothing(rand(d, n))

df = DataFrame(r', :auto)
model = ICNFModel(; m=rnode, n_epochs=8)
model = ICNFModel(; m=icnf, n_epochs=8)
mach = machine(model, df)
fit!(mach)
fd = MLJBase.fitted_params(mach).learned_parameters
Expand Down