Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add progress bar to callback #175

Merged
merged 1 commit into from
Mar 29, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 6 additions & 3 deletions Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@ CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba"
ComponentArrays = "b0b7db55-cfe3-40fc-9ded-d10e2dbeff66"
ComputationalResources = "ed09eef8-17a6-5b46-8889-db040fac31e3"
DataFrames = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0"
Dates = "ade2ca70-3891-5945-98fb-dc099432e06a"
DifferentialEquations = "0c46a032-eb83-5123-abaf-570d42b7fbaa"
Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
DistributionsAD = "ced4e74d-a319-5a8a-b0ac-84af2272839c"
Expand All @@ -26,6 +27,7 @@ NNlibCUDA = "a00861dc-f156-4864-bf3c-e6376f28a68d"
Optimisers = "3bd65402-5787-11e9-1adc-39752487f4e2"
Optimization = "7f7a1694-90dd-40f0-9382-eb1efda571ba"
OptimizationOptimisers = "42dfb2eb-d2b4-4451-abcd-913932933ac1"
ProgressMeter = "92933f4c-e287-5a05-a399-4b506db050ca"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
SciMLBase = "0bca4576-84f4-4d90-8ffe-ffa030f20462"
SciMLSensitivity = "1ed8b502-d754-442c-8d5d-10ac956f44a1"
Expand All @@ -35,8 +37,8 @@ Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f"

[compat]
AbstractDifferentiation = "0.4, 0.5"
CUDA = "3.13, 4.0"
AbstractDifferentiation = "0.5"
CUDA = "4.0"
ComponentArrays = "0.13"
ComputationalResources = "0.3"
DataFrames = "1.2"
Expand All @@ -56,9 +58,10 @@ NNlibCUDA = "0.2"
Optimisers = "0.2"
Optimization = "3.5"
OptimizationOptimisers = "0.1"
ProgressMeter = "1.7"
SciMLBase = "1.27"
SciMLSensitivity = "7.0"
ScientificTypes = "3.0"
SparseDiffTools = "1.30, 2"
SparseDiffTools = "1.31, 2.0"
Zygote = "0.6"
julia = "1.6"
2 changes: 2 additions & 0 deletions src/ICNF.jl
Original file line number Diff line number Diff line change
Expand Up @@ -21,11 +21,13 @@ using AbstractDifferentiation,
Optimisers,
Optimization,
OptimizationOptimisers,
ProgressMeter,
SciMLBase,
SciMLSensitivity,
ScientificTypes,
SparseDiffTools,
Zygote,
Dates,
LinearAlgebra,
Random,
Statistics,
Expand Down
7 changes: 5 additions & 2 deletions src/core.jl
Original file line number Diff line number Diff line change
@@ -1,8 +1,11 @@
# SciML interface

function callback_f(icnf::AbstractFlows)::Function
function callback_f(icnf::AbstractFlows, n::Integer)::Function
prgr = Progress(n; dt=eps(), desc="Training: ", showspeed=true)
itr_n = 1
function f(ps, l)
@info "Training" loss = l
ProgressMeter.next!(prgr; showvalues = [(:loss_value, l), (:iteration, itr_n), (:last_update, Dates.now())])
itr_n += one(itr_n)
false
end
f
Expand Down
2 changes: 1 addition & 1 deletion src/core_cond_icnf.jl
Original file line number Diff line number Diff line change
Expand Up @@ -107,12 +107,12 @@ function MLJModelInterface.fit(model::CondICNFModel, verbosity, XY)
end
ncdata = ncycle(data, model.n_epochs)
_loss = loss_f(model.m, model.loss, st)
_callback = callback_f(model.m)
optfunc = OptimizationFunction(_loss, model.adtype)
optprob = OptimizationProblem(optfunc, ps)
tst = @timed for opt in model.optimizers
optprob_re = remake(optprob; u0 = ps)
if model.have_callback
_callback = callback_f(model.m, length(ncdata))
res = solve(optprob_re, opt, ncdata; callback = _callback)
else
res = solve(optprob_re, opt, ncdata)
Expand Down
2 changes: 1 addition & 1 deletion src/core_icnf.jl
Original file line number Diff line number Diff line change
Expand Up @@ -103,12 +103,12 @@ function MLJModelInterface.fit(model::ICNFModel, verbosity, X)
end
ncdata = ncycle(data, model.n_epochs)
_loss = loss_f(model.m, model.loss, st)
_callback = callback_f(model.m)
optfunc = OptimizationFunction(_loss, model.adtype)
optprob = OptimizationProblem(optfunc, ps)
tst = @timed for opt in model.optimizers
optprob_re = remake(optprob; u0 = ps)
if model.have_callback
_callback = callback_f(model.m, length(ncdata))
res = solve(optprob_re, opt, ncdata; callback = _callback)
else
res = solve(optprob_re, opt, ncdata)
Expand Down