Skip to content

ClovaAI's CRAFT PyTorch powered web app that uses computer vision to scan restaurant receipts, split the bill based on guests' orders, and send SMS notifications.

License

Notifications You must be signed in to change notification settings

ikhovryak/LeggoDutch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

58 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PyTorchHackathon

Testing commands

  • CharNet:

    python tools/test_net.py configs/icdar2015_hourglass88.yaml <images_dir> <results_dir>

  • deep-text-recognition

    CUDA_VISIBLE_DEVICES=0 python3 demo.py
    --Transformation TPS --FeatureExtraction ResNet --SequenceModeling BiLSTM --Prediction Attn
    --image_folder demo_image/
    --saved_model TPS-ResNet-BiLSTM-Attn.pth

    Arguments

    --train_data: folder path to training lmdb dataset. --valid_data: folder path to validation lmdb dataset. --eval_data: folder path to evaluation (with test.py) lmdb dataset. --select_data: select training data. default is MJ-ST, which means MJ and ST used as training data. --batch_ratio: assign ratio for each selected data in the batch. default is 0.5-0.5, which means 50% of the batch is filled with MJ and the other 50% of the batch is filled ST. --data_filtering_off: skip data filtering when creating LmdbDataset. --Transformation: select Transformation module [None | TPS]. --FeatureExtraction: select FeatureExtraction module [VGG | RCNN | ResNet]. --SequenceModeling: select SequenceModeling module [None | BiLSTM]. --Prediction: select Prediction module [CTC | Attn]. --saved_model: assign saved model to evaluation. --benchmark_all_eval: evaluate with 10 evaluation dataset versions, same with Table 1 in our paper.

  • CRAFT Text Detection

    pip install -r requirements.txt python test.py --trained_model=[weightfile] --test_folder=[folder path to test images]

    Arguments

    --trained_model: pretrained model --text_threshold: text confidence threshold --low_text: text low-bound score --link_threshold: link confidence threshold --cuda: use cuda for inference (default:True) --canvas_size: max image size for inference --mag_ratio: image magnification ratio --poly: enable polygon type result --show_time: show processing time --test_folder: folder path to input images --refine: use link refiner for sentense-level dataset --refiner_model: pretrained refiner model

About

ClovaAI's CRAFT PyTorch powered web app that uses computer vision to scan restaurant receipts, split the bill based on guests' orders, and send SMS notifications.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •