Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

refactor: consolidate graph.incidence.* (#1483) #1654

Merged
merged 13 commits into from
Feb 18, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
181 changes: 64 additions & 117 deletions R/incidence.R
Original file line number Diff line number Diff line change
@@ -1,4 +1,3 @@

#' Create graphs from a bipartite adjacency matrix
#'
#' @description
Expand Down Expand Up @@ -37,109 +36,70 @@ graph.incidence <- function(incidence, directed = FALSE, mode = c("all", "out",
##
## -----------------------------------------------------------------

graph.incidence.sparse <- function(incidence, directed, mode, multiple,
weighted) {
n1 <- nrow(incidence)
n2 <- ncol(incidence)
el <- mysummary(incidence)
el[, 2] <- el[, 2] + n1

if (!is.null(weighted)) {
# adjust edgelist according to directionality of edges
modify_edgelist <- function(el, mode, directed) {
if (!directed || mode == "out") {
# No adjustment needed
return(el)
}
reversed_edges <- el[, c(2, 1, 3)]
if (mode == "in") {
return(reversed_edges)
}
rbind(el, reversed_edges)
}

if (!directed || mode == 1) {
## nothing do to
} else if (mode == 2) {
el[, 1:2] <- el[, c(2, 1)]
} else if (mode == 3) {
reversed_el <- el[, c(2, 1, 3)]
names(reversed_el) <- names(el)
el <- rbind(el, reversed_el)
}
graph_incidence_build <- function(incidence, directed = FALSE, mode = "out",
multiple = FALSE, weighted = NULL) {
num_rows <- nrow(incidence)
num_cols <- ncol(incidence)

res <- make_empty_graph(n = n1 + n2, directed = directed)
weight <- list(el[, 3])
names(weight) <- weighted
res <- add_edges(res, edges = t(as.matrix(el[, 1:2])), attr = weight)
} else {
if (multiple) {
el[, 3] <- ceiling(el[, 3])
el[, 3][el[, 3] < 0] <- 0
} else {
el[, 3] <- el[, 3] != 0
}
# Handle dense unweighted matrices first
if (!inherits(incidence, "Matrix") && is.null(weighted)) {
mode(incidence) <- "double"
on.exit(.Call(R_igraph_finalizer))

if (!directed || mode == 1) {
## nothing do to
} else if (mode == 2) {
el[, 1:2] <- el[, c(2, 1)]
} else if (mode == 3) {
el <- rbind(el, el[, c(2, 1, 3)])
}
mode_num <- switch(mode,
"out" = 1,
"in" = 2,
"all" = 3,
"total" = 3
)
res <- .Call(R_igraph_biadjacency, incidence, directed, mode_num, multiple)
return(set_vertex_attr(res$graph, "type", value = res$types))
}

edges <- unlist(apply(el, 1, function(x) rep(unname(x[1:2]), x[3])))
res <- make_graph(n = n1 + n2, edges, directed = directed)
# Convert to sparse matrix if not already sparse
if (!inherits(incidence, "Matrix")) {
incidence <- as(incidence, "dgCMatrix")
}

set_vertex_attr(res, "type", value = c(rep(FALSE, n1), rep(TRUE, n2)))
}
el <- mysummary(incidence)
el[, 2] <- el[, 2] + num_rows
el <- as.matrix(el)

graph.incidence.dense <- function(incidence, directed, mode, multiple,
weighted) {
if (!is.null(weighted)) {
el <- modify_edgelist(el, mode, directed)

n1 <- nrow(incidence)
n2 <- ncol(incidence)
no.edges <- sum(incidence != 0)
if (directed && mode == 3) {
no.edges <- no.edges * 2
}
edges <- numeric(2 * no.edges)
weight <- numeric(no.edges)
ptr <- 1
for (i in seq_len(nrow(incidence))) {
for (j in seq_len(ncol(incidence))) {
if (incidence[i, j] != 0) {
if (!directed || mode == 1) {
edges[2 * ptr - 1] <- i
edges[2 * ptr] <- n1 + j
weight[ptr] <- incidence[i, j]
ptr <- ptr + 1
} else if (mode == 2) {
edges[2 * ptr - 1] <- n1 + j
edges[2 * ptr] <- i
weight[ptr] <- incidence[i, j]
ptr <- ptr + 1
} else if (mode == 3) {
edges[2 * ptr - 1] <- i
edges[2 * ptr] <- n1 + j
weight[ptr] <- incidence[i, j]
ptr <- ptr + 1
edges[2 * ptr - 1] <- n1 + j
edges[2 * ptr] <- i
weight[ptr] <- incidence[i, j]
ptr <- ptr + 1
}
}
}
}
res <- make_empty_graph(n = n1 + n2, directed = directed)
weight <- list(weight)
names(weight) <- weighted
res <- add_edges(res, edges, attr = weight)
res <- set_vertex_attr(res, "type",
value = c(rep(FALSE, n1), rep(TRUE, n2))
)
# Construct the graph object from processed edgelist
if (!is.null(weighted)) {
# Handle weighted edges
res <- make_empty_graph(n = num_rows + num_cols, directed = directed)
weight_attr <- list(el[, 3])
names(weight_attr) <- weighted
res <- add_edges(res, edges = t(el[, 1:2]), attr = weight_attr)
} else {
mode(incidence) <- "double"
on.exit(.Call(R_igraph_finalizer))
## Function call
res <- .Call(R_igraph_biadjacency, incidence, directed, mode, multiple)
res <- set_vertex_attr(res$graph, "type", value = res$types)
# Handle unweighted edges, replicating rows for multiple edges
el <- el[rep(seq_len(nrow(el)), times = el[, 3]), 1:2]
res <- make_graph(n = num_rows + num_cols, c(t(el)), directed = directed)
}

res
set_vertex_attr(res, "type", value = c(rep(FALSE, num_rows), rep(TRUE, num_cols)))
}




#' Create graphs from a bipartite adjacency matrix
#'
#' `graph_from_biadjacency_matrix()` creates a bipartite igraph graph from an incidence
Expand Down Expand Up @@ -203,22 +163,17 @@ graph.incidence.dense <- function(incidence, directed, mode, multiple,
#' @family biadjacency
#' @export
graph_from_biadjacency_matrix <- function(incidence, directed = FALSE,
mode = c("all", "out", "in", "total"),
multiple = FALSE, weighted = NULL,
add.names = NULL) {
mode = c("all", "out", "in", "total"),
multiple = FALSE, weighted = NULL,
add.names = NULL) {
# Argument checks
directed <- as.logical(directed)
mode <- switch(igraph.match.arg(mode),
"out" = 1,
"in" = 2,
"all" = 3,
"total" = 3
)
mode <- igraph.match.arg(mode)

multiple <- as.logical(multiple)

if (!is.null(weighted)) {
if (is.logical(weighted) && weighted) {

if (multiple) {
cli::cli_abort(c(
"{.arg multiple} and {.arg weighted} cannot be both {.code TRUE}.",
Expand All @@ -241,19 +196,11 @@ graph_from_biadjacency_matrix <- function(incidence, directed = FALSE,
}
}

if (inherits(incidence, "Matrix")) {
res <- graph.incidence.sparse(incidence,
directed = directed,
mode = mode, multiple = multiple,
weighted = weighted
)
} else {
incidence <- as.matrix(incidence)
res <- graph.incidence.dense(incidence,
directed = directed, mode = mode,
multiple = multiple, weighted = weighted
)
}
res <- graph_incidence_build(incidence,
directed = directed,
mode = mode, multiple = multiple,
weighted = weighted
)

## Add names
if (is.null(add.names)) {
Expand Down Expand Up @@ -290,8 +237,8 @@ graph_from_biadjacency_matrix <- function(incidence, directed = FALSE,
#' this naming to avoid confusion with the edge-vertex incidence matrix.
#' @export
from_incidence_matrix <- function(...) { # nocov start
lifecycle::deprecate_soft("1.6.0", "graph_from_incidence_matrix()", "graph_from_biadjacency_matrix()")
graph_from_biadjacency_matrix(...)
lifecycle::deprecate_soft("1.6.0", "graph_from_incidence_matrix()", "graph_from_biadjacency_matrix()")
graph_from_biadjacency_matrix(...)
} # nocov end
#' From incidence matrix
#'
Expand All @@ -308,6 +255,6 @@ from_incidence_matrix <- function(...) { # nocov start
#' this naming to avoid confusion with the edge-vertex incidence matrix.
#' @export
graph_from_incidence_matrix <- function(...) { # nocov start
lifecycle::deprecate_soft("1.6.0", "graph_from_incidence_matrix()", "graph_from_biadjacency_matrix()")
graph_from_biadjacency_matrix(...)
lifecycle::deprecate_soft("1.6.0", "graph_from_incidence_matrix()", "graph_from_biadjacency_matrix()")
graph_from_biadjacency_matrix(...)
} # nocov end
2 changes: 1 addition & 1 deletion tests/testthat/_snaps/incidence.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@
IGRAPH UNWB 8 7 --
+ attr: type (v/l), name (v/c), weight (e/n)
+ edges (vertex names):
[1] A--c A--d B--b B--c B--e C--b C--d
[1] B--b C--b A--c B--c A--d C--d B--e

# graph_from_biadjacency_matrix() works -- dense + multiple

Expand Down
Loading