Skip to content

A Systematic Literature Review of the effect of choice of a distance/similarity/dissimilarity metric on the performance evaluation of a clustering/classification algorithm

Notifications You must be signed in to change notification settings

hussainsyed26/Effect-of-dissimilarity-metric-on-clustering-classification-algorithm-performance-Systematic-Review

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 

Repository files navigation

A Systematic Literature Review of the effect of choice of a distance/similarity/dissimilarity metric on the performance evaluation of a clustering/classification algorithm

This work was done as a research module (in my MSc) to demonstrate research writing abilities and explore a potential gap in the existing research, the context of which is mainly reviewing the effect of the choice of a distance/similarity/dissimilarity measure on clustering/classification algorithm performance. The work follows the guidelines for performing Systematic Literature Reviews in Software Engineering proposed by Kitchenham.

The results of this review indicate that the effect of the choice of a distance/similarity/dissimilarity metric on the performance of the clustering/classification algorithm is dependent on the type of data and the task being dealt with. Also, Domain-based modified (or derived or anomalous) distance/similarity/dissimilarity metrics produce better clustering/classification results.

Future work will involve undertaking a trial or experiment.

Please find attached each deliverable and its feedback on the work.

Original link (bitbucket): https://bitbucket.org/bilal658/7com1085-group93/src/master/

About

A Systematic Literature Review of the effect of choice of a distance/similarity/dissimilarity metric on the performance evaluation of a clustering/classification algorithm

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published