Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Mllama: update docs #34334

Merged
merged 4 commits into from
Oct 30, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
19 changes: 19 additions & 0 deletions docs/source/en/model_doc/mllama.md
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,25 @@ The Llama 3.2-Vision collection of multimodal large language models (LLMs) is a
- The text passed to the processor should have the `"<|image|>"` tokens where the images should be inserted.
- The processor has its own `apply_chat_template` method to convert chat messages to text that can then be passed as text to the processor.


<Tip warning={true}>

Mllama has an extra token used as a placeholder for image positions in the text. It means that input ids and an input embedding layer will have an extra token. But since the weights for input and output embeddings are not tied, the `lm_head` layer has one less token and will fail if you want to calculate loss on image tokens or apply some logit processors. In case you are training, make sure to mask out special `"<|image|>"` tokens in the `labels` as the model should not be trained on predicting them.

Otherwise if you see CUDA-side index erros when generating, use the below code to expand the `lm_head` by one more token.


```python
old_embeddings = model.get_output_embeddings()

num_tokens = model.vocab_size + 1
resized_embeddings = model._get_resized_lm_head(old_embeddings, new_num_tokens=num_tokens, mean_resizing=True)
resized_embeddings.requires_grad_(old_embeddings.weight.requires_grad)
model.set_output_embeddings(resized_embeddings)
```
</Tip>


## Usage Example

#### Instruct model
Expand Down
Loading