Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Use head_dim if in config for RoPE #32495

Merged
merged 3 commits into from
Aug 16, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 10 additions & 5 deletions src/transformers/modeling_rope_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -58,7 +58,8 @@ def _compute_default_rope_parameters(
elif config is not None:
base = config.rope_theta
partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
dim = int((config.hidden_size // config.num_attention_heads) * partial_rotary_factor)
head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
dim = int(head_dim * partial_rotary_factor)

attention_factor = 1.0 # Unused in this type of RoPE

Expand Down Expand Up @@ -143,7 +144,8 @@ def _compute_dynamic_ntk_parameters(
elif config is not None:
base = config.rope_theta
partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
dim = int((config.hidden_size // config.num_attention_heads) * partial_rotary_factor)
head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
dim = int(head_dim * partial_rotary_factor)
max_position_embeddings = config.max_position_embeddings
factor = config.rope_scaling["factor"]

Expand Down Expand Up @@ -185,7 +187,8 @@ def _compute_yarn_parameters(

base = config.rope_theta
partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
dim = int((config.hidden_size // config.num_attention_heads) * partial_rotary_factor)
head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
dim = int(head_dim * partial_rotary_factor)
max_position_embeddings = config.max_position_embeddings
factor = config.rope_scaling["factor"]

Expand Down Expand Up @@ -265,7 +268,8 @@ def _compute_longrope_parameters(

base = config.rope_theta
partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
dim = int((config.hidden_size // config.num_attention_heads) * partial_rotary_factor)
head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
dim = int(head_dim * partial_rotary_factor)
long_factor = config.rope_scaling["long_factor"]
short_factor = config.rope_scaling["short_factor"]
factor = config.rope_scaling.get("factor")
Expand Down Expand Up @@ -450,7 +454,8 @@ def _validate_longrope_parameters(config: PretrainedConfig):
_check_received_keys(rope_type, received_keys, required_keys, optional_keys)

partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
dim = int((config.hidden_size // config.num_attention_heads) * partial_rotary_factor)
head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
dim = int(head_dim * partial_rotary_factor)

short_factor = rope_scaling.get("short_factor")
if not isinstance(short_factor, list) and all(isinstance(x, (int, float)) for x in short_factor):
Expand Down
Loading