Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Revert "Fix _init_weights for ResNetPreTrainedModel" #31868

Merged
merged 1 commit into from
Jul 9, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 0 additions & 8 deletions src/transformers/models/regnet/modeling_regnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,6 @@
# limitations under the License.
"""PyTorch RegNet model."""

import math
from typing import Optional

import torch
Expand Down Expand Up @@ -285,13 +284,6 @@ class RegNetPreTrainedModel(PreTrainedModel):
def _init_weights(self, module):
if isinstance(module, nn.Conv2d):
nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu")
# copied from the `reset_parameters` method of `class Linear(Module)` in `torch`.
elif isinstance(module, nn.Linear):
nn.init.kaiming_uniform_(module.weight, a=math.sqrt(5))
if module.bias is not None:
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(module.weight)
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
nn.init.uniform_(module.bias, -bound, bound)
elif isinstance(module, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(module.weight, 1)
nn.init.constant_(module.bias, 0)
Expand Down
8 changes: 0 additions & 8 deletions src/transformers/models/resnet/modeling_resnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,6 @@
# limitations under the License.
"""PyTorch ResNet model."""

import math
from typing import Optional

import torch
Expand Down Expand Up @@ -275,13 +274,6 @@ class ResNetPreTrainedModel(PreTrainedModel):
def _init_weights(self, module):
if isinstance(module, nn.Conv2d):
nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu")
# copied from the `reset_parameters` method of `class Linear(Module)` in `torch`.
elif isinstance(module, nn.Linear):
nn.init.kaiming_uniform_(module.weight, a=math.sqrt(5))
if module.bias is not None:
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(module.weight)
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
nn.init.uniform_(module.bias, -bound, bound)
elif isinstance(module, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(module.weight, 1)
nn.init.constant_(module.bias, 0)
Expand Down
8 changes: 0 additions & 8 deletions src/transformers/models/rt_detr/modeling_rt_detr_resnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,6 @@
See https://github.com/lyuwenyu/RT-DETR/blob/5b628eaa0a2fc25bdafec7e6148d5296b144af85/rtdetr_pytorch/src/nn/backbone/presnet.py#L126 for details.
"""

import math
from typing import Optional

from torch import Tensor, nn
Expand Down Expand Up @@ -324,13 +323,6 @@ class RTDetrResNetPreTrainedModel(PreTrainedModel):
def _init_weights(self, module):
if isinstance(module, nn.Conv2d):
nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu")
# copied from the `reset_parameters` method of `class Linear(Module)` in `torch`.
elif isinstance(module, nn.Linear):
nn.init.kaiming_uniform_(module.weight, a=math.sqrt(5))
if module.bias is not None:
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(module.weight)
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
nn.init.uniform_(module.bias, -bound, bound)
elif isinstance(module, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(module.weight, 1)
nn.init.constant_(module.bias, 0)
Expand Down
72 changes: 10 additions & 62 deletions tests/test_modeling_common.py
Original file line number Diff line number Diff line change
Expand Up @@ -3167,85 +3167,33 @@ def test_mismatched_shapes_have_properly_initialized_weights(self):
configs_no_init = _config_zero_init(config)

for model_class in self.all_model_classes:
mappings = [
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
]
is_classication_model = any(model_class.__name__ in get_values(mapping) for mapping in mappings)

if not is_classication_model:
if model_class.__name__ not in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES):
continue

# TODO: ydshieh
is_special_classes = model_class.__name__ in [
"wav2vec2.masked_spec_embed",
"Wav2Vec2ForSequenceClassification",
"CLIPForImageClassification",
"RegNetForImageClassification",
"ResNetForImageClassification",
]
special_param_names = [
r"wav2vec2\.masked_spec_embed",
r"wav2vec2\.feature_extractor\.conv_layers\..+\.conv\.weight",
r"wav2vec2\.feature_projection\.projection\.weight",
r"wav2vec2\.feature_projection\.projection\.bias",
r"wav2vec2\.encoder\.pos_conv_embed\.conv\.parametrizations\.weight\.original.",
r"classifier\.weight",
r"regnet\.embedder\.embedder\.convolution\.weight",
r"regnet\.encoder\.stages\..+\.layers\..+\.layer\..+\.convolution\.weight",
r"regnet\.encoder\.stages\..+\.layers\..+\.shortcut\.convolution\.weight",
r"regnet\.encoder\.stages\..+\.layers\..+\.layer\..+\.attention\..+\.weight",
r"regnet\.encoder\.stages\..+\.layers\..+\.layer\..+\.attention\..+\.bias",
r"classifier\..+\.weight",
r"classifier\..+\.bias",
r"resnet\.embedder\.embedder\.convolution\.weight",
r"resnet\.encoder\.stages\..+\.layers\..+\.shortcut\.convolution\.weight",
r"resnet\.encoder\.stages\..+\.layers\..+\.layer\..+\.convolution\.weight",
r"resnet\.encoder\.stages\..+\.layers\..+\.shortcut\.convolution\.weight",
r"resnet\.encoder\.stages\..+\.layers\..+\.layer\..+\.attention\..+\.weight",
r"resnet\.encoder\.stages\..+\.layers\..+\.layer\..+\.attention\..+\.bias",
]

with self.subTest(msg=f"Testing {model_class}"):
with tempfile.TemporaryDirectory() as tmp_dir:
model = model_class(configs_no_init)
model.save_pretrained(tmp_dir)

# Fails when we don't set ignore_mismatched_sizes=True
with self.assertRaises(RuntimeError):
new_model = model_class.from_pretrained(tmp_dir, num_labels=42)
new_model = AutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42)

logger = logging.get_logger("transformers.modeling_utils")

with CaptureLogger(logger) as cl:
new_model = model_class.from_pretrained(tmp_dir, num_labels=42, ignore_mismatched_sizes=True)
new_model = AutoModelForSequenceClassification.from_pretrained(
tmp_dir, num_labels=42, ignore_mismatched_sizes=True
)
self.assertIn("the shapes did not match", cl.out)

for name, param in new_model.named_parameters():
if param.requires_grad:
param_mean = ((param.data.mean() * 1e9).round() / 1e9).item()
if not (
is_special_classes
and any(len(re.findall(target, name)) > 0 for target in special_param_names)
):
self.assertIn(
param_mean,
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
else:
self.assertGreaterEqual(
param_mean,
-1.0,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
self.assertLessEqual(
param_mean,
1.0,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)

def test_matched_shapes_have_loaded_weights_when_some_mismatched_shapes_exist(self):
# 1. Create a dummy class. Should have buffers as well? To make sure we test __init__
Expand Down
Loading