Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add functions to inspect model and optimizer status to trainer.py #29838

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
30 changes: 30 additions & 0 deletions src/transformers/trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -1048,6 +1048,36 @@ def create_optimizer(self):

return self.optimizer

def get_num_trainable_parameters(self):
"""
Get the number of trainable parameters.
"""
return sum(p.numel() for p in self.model.parameters() if p.requires_grad)

def get_learning_rates(self):
"""
Returns the learning rate of each parameter from self.optimizer.
"""
if self.optimizer is None:
raise ValueError("Trainer optimizer is None, please make sure you have setup the optimizer before.")
return [group["lr"] for group in self.optimizer.param_groups]

def get_optimizer_group(self, param: Optional[Union[str, torch.nn.parameter.Parameter]] = None):
"""
Returns optimizer group for a parameter if given, else returns all optimizer groups for params.

Args:
param (`str` or `torch.nn.parameter.Parameter`, *optional*):
The parameter for which optimizer group needs to be returned.
"""
if self.optimizer is None:
raise ValueError("Trainer optimizer is None, please make sure you have setup the optimizer before.")
if param is not None:
for group in self.optimizer.param_groups:
if param in group["params"]:
return group
return [group["params"] for group in self.optimizer.param_groups]

@staticmethod
def get_optimizer_cls_and_kwargs(
args: TrainingArguments, model: Optional[PreTrainedModel] = None
Expand Down
38 changes: 38 additions & 0 deletions tests/trainer/test_trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -3769,3 +3769,41 @@ def test_hyperparameter_search_backends(self):
list(ALL_HYPERPARAMETER_SEARCH_BACKENDS.keys()),
list(HPSearchBackend),
)


@require_torch
class OptimizerAndModelInspectionTest(unittest.TestCase):
def test_get_num_trainable_parameters(self):
model = nn.Sequential(nn.Linear(128, 64), nn.Linear(64, 32))
# in_features * out_features + bias
layer_1 = 128 * 64 + 64
layer_2 = 64 * 32 + 32
trainer = Trainer(model=model)
self.assertEqual(trainer.get_num_trainable_parameters(), layer_1 + layer_2)
# Freeze the last layer
for param in model[-1].parameters():
param.requires_grad = False
self.assertEqual(trainer.get_num_trainable_parameters(), layer_1)

def test_get_learning_rates(self):
model = nn.Sequential(nn.Linear(128, 64))
trainer = Trainer(model=model)
with self.assertRaises(ValueError):
trainer.get_learning_rates()
trainer.create_optimizer()
self.assertEqual(trainer.get_learning_rates(), [5e-05, 5e-05])

def test_get_optimizer_group(self):
model = nn.Sequential(nn.Linear(128, 64))
trainer = Trainer(model=model)
# ValueError is raised if optimizer is None
with self.assertRaises(ValueError):
trainer.get_optimizer_group()
trainer.create_optimizer()
# Get groups
num_groups = len(trainer.get_optimizer_group())
self.assertEqual(num_groups, 2)
# Get group of parameter
param = next(model.parameters())
group = trainer.get_optimizer_group(param)
self.assertIn(param, group["params"])
Loading