Skip to content

Commit

Permalink
fix output data type of image classification (#31444)
Browse files Browse the repository at this point in the history
* fix output data type of image classification

* add tests for low-precision pipeline

* add bf16 pipeline tests

* fix bf16 tests

* Update tests/pipelines/test_pipelines_image_classification.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix import

* fix import torch

* fix style

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
  • Loading branch information
jiqing-feng and amyeroberts authored Jun 25, 2024
1 parent 7e86cb6 commit a958c4a
Show file tree
Hide file tree
Showing 2 changed files with 34 additions and 1 deletion.
7 changes: 6 additions & 1 deletion src/transformers/pipelines/image_classification.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,8 @@
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES

if is_torch_available():
import torch

from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES

logger = logging.get_logger(__name__)
Expand Down Expand Up @@ -180,7 +182,10 @@ def postprocess(self, model_outputs, function_to_apply=None, top_k=5):
top_k = self.model.config.num_labels

outputs = model_outputs["logits"][0]
outputs = outputs.numpy()
if self.framework == "pt" and outputs.dtype in (torch.bfloat16, torch.float16):
outputs = outputs.to(torch.float32).numpy()
else:
outputs = outputs.numpy()

if function_to_apply == ClassificationFunction.SIGMOID:
scores = sigmoid(outputs)
Expand Down
28 changes: 28 additions & 0 deletions tests/pipelines/test_pipelines_image_classification.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
PreTrainedTokenizerBase,
is_torch_available,
is_vision_available,
)
from transformers.pipelines import ImageClassificationPipeline, pipeline
Expand All @@ -34,6 +35,9 @@
from .test_pipelines_common import ANY


if is_torch_available():
import torch

if is_vision_available():
from PIL import Image
else:
Expand Down Expand Up @@ -177,6 +181,30 @@ def test_custom_tokenizer(self):

self.assertIs(image_classifier.tokenizer, tokenizer)

@require_torch
def test_torch_float16_pipeline(self):
image_classifier = pipeline(
"image-classification", model="hf-internal-testing/tiny-random-vit", torch_dtype=torch.float16
)
outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg")

self.assertEqual(
nested_simplify(outputs, decimals=3),
[{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}],
)

@require_torch
def test_torch_bfloat16_pipeline(self):
image_classifier = pipeline(
"image-classification", model="hf-internal-testing/tiny-random-vit", torch_dtype=torch.bfloat16
)
outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg")

self.assertEqual(
nested_simplify(outputs, decimals=3),
[{"label": "LABEL_1", "score": 0.574}, {"label": "LABEL_0", "score": 0.426}],
)

@slow
@require_torch
def test_perceiver(self):
Expand Down

0 comments on commit a958c4a

Please sign in to comment.