π Welcome to the future of banking! Quantum Banking System combines cutting-edge AI technology with modern banking features to provide an unparalleled financial management experience.
- π Features
- π§ Installation
- π οΈ Technical Requirements
- π Getting Started
- π€ AI Features
- πΌ Core Banking Features
- π Security Features
- π Analytics & Reporting
- π± User Interface
- π API Integration
- π Library Dependencies
- βοΈ Configuration
- π Troubleshooting
- π€ Contributing
- π License
- Sentiment Analysis - Real-time transaction sentiment analysis
- Fraud Detection - ML-based anomaly detection
- Smart Categorization - NLP-powered transaction categorization
- Automated Financial Advice - AI-generated financial insights
- Predictive Analytics - ML-based spending predictions
- Account Management - Full-featured account control
- Investment Portfolio - Real-time stock tracking
- Budget Goals - Smart goal setting and tracking
- Bill Payments - Automated bill management
- Multi-Currency Support - Real-time forex conversion
# Clone the repository
git clone https://github.com/yourusername/quantum-banking.git
# Navigate to project directory
cd quantum-banking
# Create virtual environment
python -m venv venv
# Activate virtual environment
# For Windows:
venv\Scripts\activate
# For Unix/MacOS:
source venv/bin/activate
# Install required packages
pip install -r requirements.txt
# Initialize database
python initialize_db.py
- Python 3.8 or higher
- SQLite3
- 4GB RAM minimum
- 2GB free disk space
customtkinter==5.2.0
numpy==1.24.3
pandas==2.0.0
scikit-learn==1.2.2
nltk==3.8.1
transformers==4.28.1
yfinance==0.2.18
Pillow==9.5.0
matplotlib==3.7.1
- Launch the Application
python main.py
- First-Time Setup
- Create a new account using the registration interface
- Complete KYC verification
- Set up 2FA (recommended)
- Configure notification preferences
- Quick Start Guide
# Example code for basic operations
from banking_system import ModernBankingApp
# Initialize the application
app = ModernBankingApp()
# Create new account
app.register_account(
name="John Doe",
email="john@example.com",
initial_deposit=1000
)
# Perform transaction
app.transfer_funds(
from_account="123456",
to_account="789012",
amount=500
)
The system uses transformers for transaction sentiment analysis:
from transformers import pipeline
sentiment_analyzer = pipeline("sentiment-analysis")
result = sentiment_analyzer("Transaction description")
Uses Isolation Forest algorithm for anomaly detection:
from sklearn.ensemble import IsolatedForest
detector = IsolatedForest(contamination=0.1)
predictions = detector.fit_predict(transaction_data)
import nltk
from nltk.tokenize import word_tokenize
def categorize_transaction(description):
tokens = word_tokenize(description.lower())
# Category matching logic
return matched_category
-- Accounts Table
CREATE TABLE accounts (
account_number INTEGER PRIMARY KEY,
name TEXT NOT NULL,
address TEXT,
phone TEXT,
email TEXT,
account_type TEXT,
balance REAL DEFAULT 0,
password TEXT
);
-- Transactions Table
CREATE TABLE transactions (
transaction_id INTEGER PRIMARY KEY AUTOINCREMENT,
account_number INTEGER,
transaction_type TEXT,
amount REAL,
timestamp TEXT,
remarks TEXT
);
class InvestmentPortfolio:
def __init__(self):
self.stocks = {}
self.performance_metrics = {}
def add_stock(self, symbol, quantity, price):
# Stock addition logic
pass
def calculate_returns(self):
# Returns calculation logic
pass
- TOTP (Time-based One-Time Password) implementation
- QR code generation for authenticator apps
- Backup codes generation
- AES-256 encryption for sensitive data
- Secure password hashing using bcrypt
- End-to-end encryption for communications
def generate_analytics(transactions):
# Generate spending patterns
patterns = analyze_spending(transactions)
# Create visualizations
create_visualizations(patterns)
# Generate insights
insights = generate_insights(patterns)
return patterns, insights
def create_transaction_chart(data):
fig, ax = plt.subplots()
ax.plot(data['dates'], data['amounts'])
ax.set_title('Transaction Timeline')
return fig
The UI is built using customtkinter for a modern, responsive interface:
ctk.set_appearance_mode("dark")
ctk.set_default_color_theme("blue")
- Fluid layouts using grid system
- Dynamic widget sizing
- Touch-friendly interface
- Dark/Light mode support
import yfinance as yf
def get_stock_data(symbol):
stock = yf.Ticker(symbol)
return stock.info
from forex_python.converter import CurrencyRates
def convert_currency(amount, from_currency, to_currency):
c = CurrencyRates()
return c.convert(from_currency, to_currency, amount)
Create a .env
file:
DB_PATH=bank.db
SECRET_KEY=your-secret-key
API_KEY=your-api-key
DEBUG_MODE=False
import logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
filename='bank.log'
)
Common issues and solutions:
-
Database Connection Issues
# Check database connection def test_db_connection(): try: conn = sqlite3.connect('bank.db') print("Database connection successful") except sqlite3.Error as e: print(f"Database error: {e}")
-
API Connection Issues
- Verify API keys
- Check network connection
- Validate request parameters
We welcome contributions! Please follow these steps:
- Fork the repository
- Create a feature branch
- Commit your changes
- Push to the branch
- Submit a pull request
This project is licensed under the MIT License - see the LICENSE file for details.
If you find this project helpful, please star it on GitHub! Your support helps us continue development.
Made with β€οΈ by the Quantum Banking Team