Skip to content

Quantum Banking System combines cutting-edge AI technology with modern banking features to provide an unparalleled financial management experience.

License

Notifications You must be signed in to change notification settings

hari7261/Quantum-Banking-System

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

3 Commits
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

🏦 Quantum Banking System - Next-Gen AI-Powered Banking Platform

πŸš€ Welcome to the future of banking! Quantum Banking System combines cutting-edge AI technology with modern banking features to provide an unparalleled financial management experience.

πŸ“‹ Table of Contents

🌟 Features

πŸ€– AI-Powered Features

  • Sentiment Analysis - Real-time transaction sentiment analysis
  • Fraud Detection - ML-based anomaly detection
  • Smart Categorization - NLP-powered transaction categorization
  • Automated Financial Advice - AI-generated financial insights
  • Predictive Analytics - ML-based spending predictions

πŸ’° Banking Features

  • Account Management - Full-featured account control
  • Investment Portfolio - Real-time stock tracking
  • Budget Goals - Smart goal setting and tracking
  • Bill Payments - Automated bill management
  • Multi-Currency Support - Real-time forex conversion

πŸ”§ Installation

# Clone the repository
git clone https://github.com/yourusername/quantum-banking.git

# Navigate to project directory
cd quantum-banking

# Create virtual environment
python -m venv venv

# Activate virtual environment
# For Windows:
venv\Scripts\activate
# For Unix/MacOS:
source venv/bin/activate

# Install required packages
pip install -r requirements.txt

# Initialize database
python initialize_db.py

πŸ› οΈ Technical Requirements

System Requirements

  • Python 3.8 or higher
  • SQLite3
  • 4GB RAM minimum
  • 2GB free disk space

Required Libraries and Dependencies

Core Libraries

customtkinter==5.2.0
numpy==1.24.3
pandas==2.0.0
scikit-learn==1.2.2
nltk==3.8.1
transformers==4.28.1
yfinance==0.2.18
Pillow==9.5.0
matplotlib==3.7.1

πŸš€ Getting Started

  1. Launch the Application
python main.py
  1. First-Time Setup
  • Create a new account using the registration interface
  • Complete KYC verification
  • Set up 2FA (recommended)
  • Configure notification preferences
  1. Quick Start Guide
# Example code for basic operations
from banking_system import ModernBankingApp

# Initialize the application
app = ModernBankingApp()

# Create new account
app.register_account(
    name="John Doe",
    email="john@example.com",
    initial_deposit=1000
)

# Perform transaction
app.transfer_funds(
    from_account="123456",
    to_account="789012",
    amount=500
)

πŸ€– AI Features Deep Dive

Sentiment Analysis Engine

The system uses transformers for transaction sentiment analysis:

from transformers import pipeline

sentiment_analyzer = pipeline("sentiment-analysis")
result = sentiment_analyzer("Transaction description")

Fraud Detection System

Uses Isolation Forest algorithm for anomaly detection:

from sklearn.ensemble import IsolatedForest

detector = IsolatedForest(contamination=0.1)
predictions = detector.fit_predict(transaction_data)

NLP Transaction Categorization

import nltk
from nltk.tokenize import word_tokenize

def categorize_transaction(description):
    tokens = word_tokenize(description.lower())
    # Category matching logic
    return matched_category

πŸ’Ό Core Banking Features

Database Schema

-- Accounts Table
CREATE TABLE accounts (
    account_number INTEGER PRIMARY KEY,
    name TEXT NOT NULL,
    address TEXT,
    phone TEXT,
    email TEXT,
    account_type TEXT,
    balance REAL DEFAULT 0,
    password TEXT
);

-- Transactions Table
CREATE TABLE transactions (
    transaction_id INTEGER PRIMARY KEY AUTOINCREMENT,
    account_number INTEGER,
    transaction_type TEXT,
    amount REAL,
    timestamp TEXT,
    remarks TEXT
);

Investment Portfolio Management

class InvestmentPortfolio:
    def __init__(self):
        self.stocks = {}
        self.performance_metrics = {}
        
    def add_stock(self, symbol, quantity, price):
        # Stock addition logic
        pass
        
    def calculate_returns(self):
        # Returns calculation logic
        pass

πŸ”’ Security Features

Two-Factor Authentication

  • TOTP (Time-based One-Time Password) implementation
  • QR code generation for authenticator apps
  • Backup codes generation

Encryption

  • AES-256 encryption for sensitive data
  • Secure password hashing using bcrypt
  • End-to-end encryption for communications

πŸ“Š Analytics & Reporting

Transaction Analytics

def generate_analytics(transactions):
    # Generate spending patterns
    patterns = analyze_spending(transactions)
    
    # Create visualizations
    create_visualizations(patterns)
    
    # Generate insights
    insights = generate_insights(patterns)
    
    return patterns, insights

Custom Matplotlib Charts

def create_transaction_chart(data):
    fig, ax = plt.subplots()
    ax.plot(data['dates'], data['amounts'])
    ax.set_title('Transaction Timeline')
    return fig

πŸ“± User Interface

The UI is built using customtkinter for a modern, responsive interface:

Theme Configuration

ctk.set_appearance_mode("dark")
ctk.set_default_color_theme("blue")

Responsive Design

  • Fluid layouts using grid system
  • Dynamic widget sizing
  • Touch-friendly interface
  • Dark/Light mode support

πŸ”Œ API Integration

Stock Market Data

import yfinance as yf

def get_stock_data(symbol):
    stock = yf.Ticker(symbol)
    return stock.info

Forex Rates

from forex_python.converter import CurrencyRates

def convert_currency(amount, from_currency, to_currency):
    c = CurrencyRates()
    return c.convert(from_currency, to_currency, amount)

βš™οΈ Configuration

Environment Variables

Create a .env file:

DB_PATH=bank.db
SECRET_KEY=your-secret-key
API_KEY=your-api-key
DEBUG_MODE=False

Logging Configuration

import logging

logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    filename='bank.log'
)

πŸ” Troubleshooting

Common issues and solutions:

  1. Database Connection Issues

    # Check database connection
    def test_db_connection():
        try:
            conn = sqlite3.connect('bank.db')
            print("Database connection successful")
        except sqlite3.Error as e:
            print(f"Database error: {e}")
  2. API Connection Issues

    • Verify API keys
    • Check network connection
    • Validate request parameters

🀝 Contributing

We welcome contributions! Please follow these steps:

  1. Fork the repository
  2. Create a feature branch
  3. Commit your changes
  4. Push to the branch
  5. Submit a pull request

πŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.


🌟 Star Us on GitHub

If you find this project helpful, please star it on GitHub! Your support helps us continue development.


Made with ❀️ by the Quantum Banking Team

About

Quantum Banking System combines cutting-edge AI technology with modern banking features to provide an unparalleled financial management experience.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages