Skip to content

Commit

Permalink
Add a script to supervise template fitting in pycbc live (#4813)
Browse files Browse the repository at this point in the history
* Move code which will be shared into a module

* getting more things ready for the trigger fits / dq supervision

* start work on fit_by, fit_over and DQ trigger supervision

* some work - bring in latest trigger file finding

* updates to use latest trigger file finding

* pass cuts through to the collation script

* symlink fit_over_multiparam output to variable file

* remove unused imports, argument ordering, plot titles

* CC

* Fix docstring, formatting

* Move the trigger collatiojn/fitting superviosor to use configparsert

* start moving significance fit supervision to configparser

* Start puttinf template fits into supervision code shared with significance fits

* Deal properly with whene there are no trigers, so we can't calculate the median_sigma

* Remove no-longer-valid efficiency savings

* Some minor fixes for when sending mail from supervision

* Mve to a single supervision file for both trigger and significance fits

* Remove FIXMEs

* Use check=True with subprocess.run

* Remove function checking fit coefficients - it is now unclear what the 'safe' ranges should be for the various different stages

* Fix minor bug

* typo

* Some minor fixes and TDC comments

* CC
  • Loading branch information
GarethCabournDavies authored Jul 24, 2024
1 parent 3d9f7e2 commit 65b8a89
Show file tree
Hide file tree
Showing 9 changed files with 802 additions and 536 deletions.
3 changes: 3 additions & 0 deletions bin/all_sky_search/pycbc_fit_sngls_by_template
Original file line number Diff line number Diff line change
Expand Up @@ -352,6 +352,9 @@ sigma_regions = trigf[args.ifo + '/sigmasq_template'][:]
median_sigma = []
for reg in sigma_regions:
strigs = trigf[args.ifo + '/sigmasq'][reg]
if len(strigs) == 0:
median_sigma.append(np.nan)
continue
median_sigma.append(np.median(strigs) ** 0.5)

outfile = HFile(args.output, 'w')
Expand Down
10 changes: 8 additions & 2 deletions bin/all_sky_search/pycbc_fit_sngls_over_multiparam
Original file line number Diff line number Diff line change
Expand Up @@ -342,14 +342,20 @@ if len(args.template_fit_file) > 1:
nasum = nabove[tidsort].cumsum()
invsum = invalphan[tidsort].cumsum()
ntsum = ntotal[tidsort].cumsum()
mssum = median_sigma[tidsort].cumsum()
num = right - left

tid = tid_unique
nabove = (nasum[right] - nasum[left]) / num
invalphan = (invsum[right] - invsum[left]) / num
ntotal = (ntsum[right] - ntsum[left]) / num
median_sigma = (mssum[right] - mssum[left]) / num
if median_sigma is not None:
# Median sigma is a special one - we need to make sure that
# we do not mess things up when nan values are given, so we
# can't use the special cumsum fast option
median_sigma = [
numpy.nanmean(median_sigma[tidsort[l:r]])
for l, r in zip(left, right)
]

if args.output_fits_by_template:
# Store fit_by_template values for output file
Expand Down
4 changes: 2 additions & 2 deletions bin/live/pycbc_live_plot_single_significance_fits
Original file line number Diff line number Diff line change
Expand Up @@ -131,10 +131,10 @@ for ifo in all_ifos:
continue

# Keep track of some maxima for use in setting the plot limits
maxstat = stats[ifo].max()
maxstat = np.nanmax(stats[ifo])
max_rate = 0

statrange = maxstat - max(stats[ifo].min(), fit_threshold[ifo])
statrange = maxstat - max(np.nanmin(stats[ifo]), fit_threshold[ifo])
plotmax = maxstat + statrange * 0.05

plotbins = np.linspace(fit_threshold[ifo], plotmax, 400)
Expand Down
7 changes: 0 additions & 7 deletions bin/live/pycbc_live_single_significance_fits
Original file line number Diff line number Diff line change
Expand Up @@ -98,13 +98,6 @@ args.trigger_cuts = args.trigger_cuts or []
args.trigger_cuts.append(f"end_time:{args.gps_start_time}:lower_inc")
args.trigger_cuts.append(f"end_time:{args.gps_end_time}:upper_inc")

# Efficiency saving: add SNR cut before any others as sngl_ranking can
# only be less than SNR.
args.trigger_cuts.insert(0, f"snr:{args.fit_threshold}:lower_inc")

# Cut triggers with sngl-ranking below threshold
args.trigger_cuts.append(f"{args.sngl_ranking}:{args.fit_threshold}:lower_inc")

trigger_cut_dict, template_cut_dict = cuts.ingest_cuts_option_group(args)

logging.info("Setting up duration bins")
Expand Down
Loading

0 comments on commit 65b8a89

Please sign in to comment.