Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

StaggeredFEOperators #84

Merged
merged 9 commits into from
Dec 15, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 0 additions & 10 deletions CHANGELOG.md

This file was deleted.

18 changes: 18 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
# Changelog

All notable changes to this project will be documented in this file.

The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).

## [Unreleased]

### Added

- Added support for GMG in serial. Since PR[#68](https://github.com/gridap/GridapSolvers.jl/pull/68).
- Added Vanka-like smoothers in serial. Since PR[#68](https://github.com/gridap/GridapSolvers.jl/pull/68).
- Added `StaggeredFEOperators` and `StaggeredFESolvers`. Since PR[#84](https://github.com/gridap/GridapSolvers.jl/pull/84).

## Previous versions

A changelog is not maintained for older versions than 0.4.0.
10 changes: 10 additions & 0 deletions docs/src/BlockSolvers.md
Original file line number Diff line number Diff line change
Expand Up @@ -59,3 +59,13 @@ BlockTriangularSolver
BlockTriangularSolver(blocks::AbstractMatrix{<:SolverBlock},solvers ::AbstractVector{<:LinearSolver},)
BlockTriangularSolver(solvers::AbstractVector{<:LinearSolver})
```

## Staggered FEOperators

```@docs
StaggeredFESolver
StaggeredFEOperator
StaggeredAffineFEOperator
StaggeredNonlinearFEOperator
solve!(xh, solver::StaggeredFESolver{NB}, op::StaggeredFEOperator{NB}, ::Nothing) where {NB}
```
29 changes: 29 additions & 0 deletions docs/src/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,8 @@ GridapSolvers provides algebraic and non-algebraic solvers for the Gridap ecosys

Solvers follow a modular design, where most blocks can be combined to produce PDE-taylored solvers for a wide range of problems.

## Table of contents

```@contents
Pages = [
"SolverInterfaces.md",
Expand All @@ -20,3 +22,30 @@ Pages = [
"PatchBasedSmoothers.md"
]
```

## Documentation and examples

A (hopefully) comprehensive documentation is available [here](https://gridap.github.io/GridapSolvers.jl/stable/).

A list of examples is available in the documentation. These include some very well known examples such as the Stokes, Incompressible Navier-Stokes and Darcy problems. The featured scripts are available in `test/Applications`.

An example on how to use the library within an HPC cluster is available in `joss_paper/scalability`. The included example and drivers are used to generate the scalability results in our [JOSS paper](https://doi.org/10.21105/joss.07162).

## Installation

GridapSolvers is a registered package in the official [Julia package registry](https://github.com/JuliaRegistries/General). Thus, the installation of GridapSolvers is straight forward using the [Julia's package manager](https://julialang.github.io/Pkg.jl/v1/). Open the Julia REPL, type `]` to enter package mode, and install as follows

```julia
pkg> add GridapSolvers
pkg> build
```

Building is required to link the external artifacts (e.g., PETSc, p4est) to the Julia environment. Restarting Julia is required after building in order to make the changes take effect.

### Using custom binaries

The previous installations steps will setup GridapSolvers to work using Julia's pre-compiled artifacts for MPI, PETSc and p4est. However, you can also link local copies of these libraries. This might be very desirable in clusters, where hardware-specific libraries might be faster/more stable than the ones provided by Julia. To do so, follow the next steps:

- [MPI.jl](https://juliaparallel.org/MPI.jl/stable/configuration/)
- [GridapPETSc.jl](https://github.com/gridap/GridapPETSc.jl)
- [GridapP4est.jl](https://github.com/gridap/GridapP4est.jl), and [P4est_wrapper.jl](https://github.com/gridap/p4est_wrapper.jl)
162 changes: 87 additions & 75 deletions src/BlockSolvers/BlockFEOperators.jl
Original file line number Diff line number Diff line change
@@ -1,47 +1,62 @@

struct BlockFEOperator{NB,SB,P} <: FEOperator
global_op :: FEOperator
block_ops :: Matrix{<:Union{<:FEOperator,Missing,Nothing}}
is_nonlinear :: Matrix{Bool}
global_op :: FEOperator
block_ids :: Vector{CartesianIndex{2}}
block_ops :: Vector{FEOperator}
nonlinear :: Vector{Bool}
end

const BlockFESpaceTypes{NB,SB,P} = Union{<:MultiFieldFESpace{<:BlockMultiFieldStyle{NB,SB,P}},<:GridapDistributed.DistributedMultiFieldFESpace{<:BlockMultiFieldStyle{NB,SB,P}}}

function BlockFEOperator(
res::Matrix{<:Union{<:Function,Missing,Nothing}},
res::Vector{<:Union{<:Function,Missing,Nothing}},
jac::Matrix{<:Union{<:Function,Missing,Nothing}},
args...; nonlinear = fill(true,size(res))
)
keep(x) = !ismissing(x) && !isnothing(x)
ids = findall(keep, res)
@assert ids == findall(keep, jac)
_res = [res[I] for I in ids]
_jac = [jac[I] for I in ids]
return BlockFEOperator(_res,_jac,ids,args...; nonlinear = nonlinear[ids])
end

function BlockFEOperator(
contributions :: Vector{<:Tuple{Any,Function,Function}}, args...; kwargs...
)
ids = [CartesianIndex(c[1]) for c in contributions]
res = [c[2] for c in contributions]
jac = [c[3] for c in contributions]
return BlockFEOperator(res,jac,ids,args...;kwargs...)
end

function BlockFEOperator(
res::Vector{<:Function},
jac::Vector{<:Function},
ids::Vector{CartesianIndex{2}},
trial::BlockFESpaceTypes,
test::BlockFESpaceTypes;
test ::BlockFESpaceTypes;
kwargs...
)
assem = SparseMatrixAssembler(test,trial)
return BlockFEOperator(res,jac,trial,test,assem)
return BlockFEOperator(res,jac,ids,trial,test,assem;kwargs...)
end

# TODO: I think nonlinear should not be a kwarg, since its the whole point of this operator
function BlockFEOperator(
res::Matrix{<:Union{<:Function,Missing,Nothing}},
jac::Matrix{<:Union{<:Function,Missing,Nothing}},
res::Vector{<:Function},
jac::Vector{<:Function},
ids::Vector{CartesianIndex{2}},
trial::BlockFESpaceTypes{NB,SB,P},
test::BlockFESpaceTypes{NB,SB,P},
assem::MultiField.BlockSparseMatrixAssembler{NB,NV,SB,P};
is_nonlinear::Matrix{Bool}=fill(true,(NB,NB))
nonlinear::Vector{Bool}=fill(true,length(res))
) where {NB,NV,SB,P}
@check size(res,1) == size(jac,1) == NB
@check size(res,2) == size(jac,2) == NB

global_res = residual_from_blocks(NB,SB,P,res)
global_jac = jacobian_from_blocks(NB,SB,P,jac)
ranges = MultiField.get_block_ranges(NB,SB,P)
global_res = residual_from_blocks(ids,ranges,res)
global_jac = jacobian_from_blocks(ids,ranges,jac)
global_op = FEOperator(global_res,global_jac,trial,test,assem)

trial_blocks = blocks(trial)
test_blocks = blocks(test)
assem_blocks = blocks(assem)
block_ops = map(CartesianIndices(res)) do I
if !ismissing(res[I]) && !isnothing(res[I])
FEOperator(res[I],jac[I],test_blocks[I[1]],trial_blocks[I[2]],assem_blocks[I])
end
end
return BlockFEOperator{NB,SB,P}(global_op,block_ops,is_nonlinear)
block_ops = map(FEOperator,res,jac,blocks(trial),blocks(test),blocks(assem))
return BlockFEOperator{NB,SB,P}(global_op,block_ids,block_ops,nonlinear)
end

# BlockArrays API
Expand All @@ -58,85 +73,82 @@ Algebra.allocate_jacobian(op::BlockFEOperator,u) = allocate_jacobian(op.global_o
Algebra.jacobian(op::BlockFEOperator,u) = jacobian(op.global_op,u)
Algebra.residual!(b::AbstractVector,op::BlockFEOperator,u) = residual!(b,op.global_op,u)

function Algebra.jacobian!(A::AbstractBlockMatrix,op::BlockFEOperator{NB},u) where NB
map(blocks(A),blocks(op),op.is_nonlinear) do A,op,nl
if nl
residual!(A,op,u)
function Algebra.jacobian!(A::AbstractBlockMatrix,op::BlockFEOperator,u)
A_blocks = blocks(A)
for (i,I) in enumerate(op.block_ids)
if op.nonlinear[i]
jacobian!(A_blocks[I],op.block_ops[i],u)
end
end
return A
end

# Private methods

function residual_from_blocks(NB,SB,P,block_residuals)
function res(u,v)
block_ranges = MultiField.get_block_ranges(NB,SB,P)
block_u = map(r -> (length(r) == 1) ? u[r[1]] : Tuple(u[r]), block_ranges)
block_v = map(r -> (length(r) == 1) ? v[r[1]] : Tuple(v[r]), block_ranges)
block_contrs = map(CartesianIndices(block_residuals)) do I
if !ismissing(block_residuals[I]) && !isnothing(block_residuals[I])
block_residuals[I](block_u[I[2]],block_v[I[1]])
end
end
return add_block_contribs(block_contrs)
end
return res
end

function jacobian_from_blocks(NB,SB,P,block_jacobians)
function jac(u,du,dv)
block_ranges = MultiField.get_block_ranges(NB,SB,P)
block_u = map(r -> (length(r) == 1) ? u[r[1]] : Tuple(u[r]) , block_ranges)
block_du = map(r -> (length(r) == 1) ? du[r[1]] : Tuple(du[r]), block_ranges)
block_dv = map(r -> (length(r) == 1) ? dv[r[1]] : Tuple(dv[r]), block_ranges)
block_contrs = map(CartesianIndices(block_jacobians)) do I
if !ismissing(block_jacobians[I]) && !isnothing(block_jacobians[I])
block_jacobians[I](block_u[I[2]],block_du[I[2]],block_dv[I[1]])
end
end
return add_block_contribs(block_contrs)
end
return jac
end

function add_block_contribs(contrs)
c = contrs[1]
for ci in contrs[2:end]
if !ismissing(ci) && !isnothing(ci)
c = c + ci
end
end
return c
end

function BlockArrays.blocks(a::MultiField.BlockSparseMatrixAssembler)
return a.block_assemblers
end

function BlockArrays.blocks(f::MultiFieldFESpace{<:BlockMultiFieldStyle{NB,SB,P}}) where {NB,SB,P}
block_ranges = MultiField.get_block_ranges(NB,SB,P)
block_spaces = map(block_ranges) do range
(length(range) == 1) ? f[range[1]] : MultiFieldFESpace(f[range])
(length(range) == 1) ? f[range[1]] : MultiFieldFESpace(f.spaces[range])
end
return block_spaces
end

function BlockArrays.blocks(f::GridapDistributed.DistributedMultiFieldFESpace{<:BlockMultiFieldStyle{NB,SB,P}}) where {NB,SB,P}
block_gids = blocks(get_free_dof_ids(f))

block_ranges = MultiField.get_block_ranges(NB,SB,P)
block_spaces = map(block_ranges,block_gids) do range, gids
if (length(range) == 1)
space = f[range[1]]
else
global_sf_spaces = f[range]
local_sf_spaces = GridapDistributed.to_parray_of_arrays(map(local_views,global_sf_spaces))
global_sf_spaces = f.field_fe_space[range]
local_sf_spaces = to_parray_of_arrays(map(local_views,global_sf_spaces))
local_mf_spaces = map(MultiFieldFESpace,local_sf_spaces)
vector_type = GridapDistributed._find_vector_type(local_mf_spaces,gids)
space = MultiFieldFESpace(global_sf_spaces,local_mf_spaces,gids,vector_type)
space = DistributedMultiFieldFESpace(global_sf_spaces,local_mf_spaces,gids,vector_type)
end
space
end
return block_spaces
end

function liform_from_blocks(ids, ranges, liforms)
function biform(v)
c = DomainContribution()
for (I,lf) in zip(ids, liforms)
vk = v[ranges[I]]
c += lf(uk,vk)
end
return c
end
return biform
end

function biform_from_blocks(ids, ranges, biforms)
function biform(u,v)
c = DomainContribution()
for (I,bf) in zip(ids, biforms)
uk = u[ranges[I[1]]]
vk = v[ranges[I[2]]]
c += bf(uk,vk)
end
return c
end
return biform
end

function triform_from_blocks(ids, ranges, triforms)
function triform(u,du,dv)
c = DomainContribution()
for (I,tf) in zip(ids, triforms)
duk = du[ranges[I[1]]]
dvk = dv[ranges[I[2]]]
c += tf(u,duk,dvk)
end
return c
end
return triform
end
50 changes: 31 additions & 19 deletions src/BlockSolvers/BlockSolvers.jl
Original file line number Diff line number Diff line change
@@ -1,28 +1,40 @@
module BlockSolvers
using LinearAlgebra
using SparseArrays
using SparseMatricesCSR
using BlockArrays
using IterativeSolvers

using Gridap
using Gridap.Helpers, Gridap.Algebra, Gridap.CellData, Gridap.Arrays, Gridap.FESpaces, Gridap.MultiField
using PartitionedArrays
using GridapDistributed
using LinearAlgebra
using SparseArrays
using SparseMatricesCSR
using BlockArrays
using IterativeSolvers

using GridapSolvers.MultilevelTools
using GridapSolvers.SolverInterfaces
using Gridap
using Gridap.Helpers, Gridap.Algebra, Gridap.CellData, Gridap.Arrays, Gridap.FESpaces, Gridap.MultiField
using PartitionedArrays
using GridapDistributed

include("BlockFEOperators.jl")
using GridapSolvers.MultilevelTools
using GridapSolvers.SolverInterfaces

include("BlockSolverInterfaces.jl")
include("BlockDiagonalSolvers.jl")
include("BlockTriangularSolvers.jl")
using Gridap.MultiField: BlockSparseMatrixAssembler

export BlockFEOperator
using GridapDistributed: to_parray_of_arrays
using GridapDistributed: DistributedMultiFieldFESpace, DistributedMultiFieldFEFunction

export MatrixBlock, LinearSystemBlock, NonlinearSystemBlock, BiformBlock, TriformBlock
const MultiFieldFESpaceTypes = Union{<:MultiFieldFESpace,<:GridapDistributed.DistributedMultiFieldFESpace}
const BlockFESpaceTypes{NB,SB,P} = Union{<:MultiFieldFESpace{<:BlockMultiFieldStyle{NB,SB,P}},<:GridapDistributed.DistributedMultiFieldFESpace{<:BlockMultiFieldStyle{NB,SB,P}}}

include("BlockSolverInterfaces.jl")
include("BlockDiagonalSolvers.jl")
include("BlockTriangularSolvers.jl")

include("BlockFEOperators.jl")
include("StaggeredFEOperators.jl")

export MatrixBlock, LinearSystemBlock, NonlinearSystemBlock, BiformBlock, TriformBlock

export BlockDiagonalSolver
export BlockTriangularSolver

export BlockFEOperator
export StaggeredFEOperator, StaggeredAffineFEOperator, StaggeredNonlinearFEOperator, StaggeredFESolver

export BlockDiagonalSolver
export BlockTriangularSolver
end
Loading
Loading