Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Generic Block solvers #49

Merged
merged 17 commits into from
Jan 14, 2024
116 changes: 116 additions & 0 deletions src/BlockSolvers/BlockDiagonalSolvers.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,116 @@

struct BlockDiagonalSolver{N,A,B} <: Gridap.Algebra.LinearSolver
blocks :: A
solvers :: B
function BlockDiagonalSolver(
blocks :: AbstractVector{<:SolverBlock},
solvers :: AbstractVector{<:Gridap.Algebra.LinearSolver}
)
N = length(solvers)
@check length(blocks) == N

A = typeof(blocks)
B = typeof(solvers)
return new{N,A,B}(blocks,solvers)
end
end

# Constructors

function BlockDiagonalSolver(solvers::AbstractVector{<:Gridap.Algebra.LinearSolver};
is_nonlinear::Vector{Bool}=fill(false,length(solvers)))
blocks = map(nl -> nl ? NonlinearSystemBlock() : LinearSystemBlock(),is_nonlinear)
return BlockDiagonalSolver(blocks,solvers)
end

function BlockDiagonalSolver(funcs :: AbstractArray{<:Function},
trials :: AbstractArray{<:FESpace},
tests :: AbstractArray{<:FESpace},
solvers :: AbstractArray{<:Gridap.Algebra.LinearSolver};
is_nonlinear::Vector{Bool}=fill(false,length(solvers)))
blocks = map(funcs,trials,tests,is_nonlinear) do f,trial,test,nl
nl ? TriformBlock(f,trial,test) : BiformBlock(f,trial,test)
end
return BlockDiagonalSolver(blocks,solvers)
end

function BlockDiagonalSolver(mats::AbstractVector{<:AbstractMatrix},
solvers::AbstractVector{<:Gridap.Algebra.LinearSolver})
blocks = map(MatrixBlock,mats)
return BlockDiagonalSolver(blocks,solvers)
end

# Symbolic setup

struct BlockDiagonalSolverSS{A,B,C} <: Gridap.Algebra.SymbolicSetup
solver :: A
block_ss :: B
block_caches :: C
end

function Gridap.Algebra.symbolic_setup(solver::BlockDiagonalSolver,mat::AbstractBlockMatrix)
mat_blocks = diag(blocks(mat))
block_caches = map(instantiate_block_cache,solver.blocks,mat_blocks)
block_ss = map(symbolic_setup,solver.solvers,block_caches)
return BlockDiagonalSolverSS(solver,block_ss,block_caches)
end

function Gridap.Algebra.symbolic_setup(solver::BlockDiagonalSolver,mat::AbstractBlockMatrix,x::AbstractBlockVector)
mat_blocks = diag(blocks(mat))
vec_blocks = blocks(x)
block_caches = map(instantiate_block_cache,solver.blocks,mat_blocks,vec_blocks)
block_ss = map(symbolic_setup,solver.solvers,block_caches,vec_blocks)
return BlockDiagonalSolverSS(solver,block_ss,block_caches)
end

# Numerical setup

struct BlockDiagonalSolverNS{A,B,C} <: Gridap.Algebra.NumericalSetup
solver :: A
block_ns :: B
block_caches :: C
end

function Gridap.Algebra.numerical_setup(ss::BlockDiagonalSolverSS,mat::AbstractBlockMatrix)
solver = ss.solver
block_ns = map(numerical_setup,ss.block_ss,ss.block_caches)
return BlockDiagonalSolverNS(solver,block_ns,ss.block_caches)
end

function Gridap.Algebra.numerical_setup(ss::BlockDiagonalSolverSS,mat::AbstractBlockMatrix,x::AbstractBlockVector)
solver = ss.solver
vec_blocks = blocks(x)
block_ns = map(numerical_setup,ss.block_ss,ss.block_caches,vec_blocks)
return BlockDiagonalSolverNS(solver,block_ns,ss.block_caches)
end

function Gridap.Algebra.numerical_setup!(ns::BlockDiagonalSolverNS,mat::AbstractBlockMatrix)
solver = ns.solver
mat_blocks = diag(blocks(mat))
block_caches = map(update_block_cache!,ns.block_caches,solver.blocks,mat_blocks)
map(numerical_setup!,ns.block_ns,block_caches)
return ns
end

function Gridap.Algebra.numerical_setup!(ns::BlockDiagonalSolverNS,mat::AbstractBlockMatrix,x::AbstractBlockVector)
solver = ns.solver
mat_blocks = diag(blocks(mat))
vec_blocks = blocks(x)
block_caches = map(update_block_cache!,ns.block_caches,solver.blocks,mat_blocks,vec_blocks)
map(numerical_setup!,ns.block_ns,block_caches,vec_blocks)
return ns
end

function Gridap.Algebra.solve!(x::AbstractBlockVector,ns::BlockDiagonalSolverNS,b::AbstractBlockVector)
@check blocklength(x) == blocklength(b) == length(ns.block_ns)
for (iB,bns) in enumerate(ns.block_ns)
xi = x[Block(iB)]
bi = b[Block(iB)]
solve!(xi,bns,bi)
end
return x
end

function LinearAlgebra.ldiv!(x,ns::BlockDiagonalSolverNS,b)
solve!(x,ns,b)
end
142 changes: 142 additions & 0 deletions src/BlockSolvers/BlockFEOperators.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,142 @@

struct BlockFEOperator{NB,SB,P} <: FEOperator
global_op :: FEOperator
block_ops :: Matrix{<:Union{<:FEOperator,Missing,Nothing}}
is_nonlinear :: Matrix{Bool}
end

const BlockFESpaceTypes{NB,SB,P} = Union{<:MultiFieldFESpace{<:BlockMultiFieldStyle{NB,SB,P}},<:GridapDistributed.DistributedMultiFieldFESpace{<:BlockMultiFieldStyle{NB,SB,P}}}

function BlockFEOperator(
res::Matrix{<:Union{<:Function,Missing,Nothing}},
jac::Matrix{<:Union{<:Function,Missing,Nothing}},
trial::BlockFESpaceTypes,
test::BlockFESpaceTypes;
kwargs...
)
assem = SparseMatrixAssembler(test,trial)
return BlockFEOperator(res,jac,trial,test,assem)
end

function BlockFEOperator(
res::Matrix{<:Union{<:Function,Missing,Nothing}},
jac::Matrix{<:Union{<:Function,Missing,Nothing}},
trial::BlockFESpaceTypes{NB,SB,P},
test::BlockFESpaceTypes{NB,SB,P},
assem::MultiField.BlockSparseMatrixAssembler{NB,NV,SB,P};
is_nonlinear::Matrix{Bool}=fill(true,(NB,NB))
) where {NB,NV,SB,P}
@check size(res,1) == size(jac,1) == NB
@check size(res,2) == size(jac,2) == NB

global_res = residual_from_blocks(NB,SB,P,res)
global_jac = jacobian_from_blocks(NB,SB,P,jac)
global_op = FEOperator(global_res,global_jac,trial,test,assem)

trial_blocks = blocks(trial)
test_blocks = blocks(test)
assem_blocks = blocks(assem)
block_ops = map(CartesianIndices(res)) do I
if !ismissing(res[I]) && !isnothing(res[I])
FEOperator(res[I],jac[I],test_blocks[I[1]],trial_blocks[I[2]],assem_blocks[I])
end
end
return BlockFEOperator{NB,SB,P}(global_op,block_ops,is_nonlinear)
end

# BlockArrays API

BlockArrays.blocks(op::BlockFEOperator) = op.block_ops

# FEOperator API

FESpaces.get_test(op::BlockFEOperator) = get_test(op.global_op)
FESpaces.get_trial(op::BlockFEOperator) = get_trial(op.global_op)
Algebra.allocate_residual(op::BlockFEOperator,u) = allocate_residual(op.global_op,u)
Algebra.residual(op::BlockFEOperator,u) = residual(op.global_op,u)
Algebra.allocate_jacobian(op::BlockFEOperator,u) = allocate_jacobian(op.global_op,u)
Algebra.jacobian(op::BlockFEOperator,u) = jacobian(op.global_op,u)
Algebra.residual!(b::AbstractVector,op::BlockFEOperator,u) = residual!(b,op.global_op,u)

function Algebra.jacobian!(A::AbstractBlockMatrix,op::BlockFEOperator{NB},u) where NB
map(blocks(A),blocks(op),op.is_nonlinear) do A,op,nl
if nl
residual!(A,op,u)
end
end
return A
end

# Private methods

function residual_from_blocks(NB,SB,P,block_residuals)
function res(u,v)
block_ranges = MultiField.get_block_ranges(NB,SB,P)
block_u = map(r -> (length(r) == 1) ? u[r[1]] : Tuple(u[r]), block_ranges)
block_v = map(r -> (length(r) == 1) ? v[r[1]] : Tuple(v[r]), block_ranges)
block_contrs = map(CartesianIndices(block_residuals)) do I
if !ismissing(block_residuals[I]) && !isnothing(block_residuals[I])
block_residuals[I](block_u[I[2]],block_v[I[1]])
end
end
return add_block_contribs(block_contrs)
end
return res
end

function jacobian_from_blocks(NB,SB,P,block_jacobians)
function jac(u,du,dv)
block_ranges = MultiField.get_block_ranges(NB,SB,P)
block_u = map(r -> (length(r) == 1) ? u[r[1]] : Tuple(u[r]) , block_ranges)
block_du = map(r -> (length(r) == 1) ? du[r[1]] : Tuple(du[r]), block_ranges)
block_dv = map(r -> (length(r) == 1) ? dv[r[1]] : Tuple(dv[r]), block_ranges)
block_contrs = map(CartesianIndices(block_jacobians)) do I
if !ismissing(block_jacobians[I]) && !isnothing(block_jacobians[I])
block_jacobians[I](block_u[I[2]],block_du[I[2]],block_dv[I[1]])
end
end
return add_block_contribs(block_contrs)
end
return jac
end

function add_block_contribs(contrs)
c = contrs[1]
for ci in contrs[2:end]
if !ismissing(ci) && !isnothing(ci)
c = c + ci
end
end
return c
end

function BlockArrays.blocks(a::MultiField.BlockSparseMatrixAssembler)
return a.block_assemblers
end

function BlockArrays.blocks(f::MultiFieldFESpace{<:BlockMultiFieldStyle{NB,SB,P}}) where {NB,SB,P}
block_ranges = MultiField.get_block_ranges(NB,SB,P)
block_spaces = map(block_ranges) do range
(length(range) == 1) ? f[range[1]] : MultiFieldFESpace(f[range])
end
return block_spaces
end

function BlockArrays.blocks(f::GridapDistributed.DistributedMultiFieldFESpace{<:BlockMultiFieldStyle{NB,SB,P}}) where {NB,SB,P}
block_gids = blocks(get_free_dof_ids(f))

block_ranges = MultiField.get_block_ranges(NB,SB,P)
block_spaces = map(block_ranges,block_gids) do range, gids
if (length(range) == 1)
space = f[range[1]]
else
global_sf_spaces = f[range]
local_sf_spaces = GridapDistributed.to_parray_of_arrays(map(local_views,global_sf_spaces))
local_mf_spaces = map(MultiFieldFESpace,local_sf_spaces)
vector_type = GridapDistributed._find_vector_type(local_mf_spaces,gids)
space = MultiFieldFESpace(global_sf_spaces,local_mf_spaces,gids,vector_type)
end
space
end
return block_spaces
end
95 changes: 95 additions & 0 deletions src/BlockSolvers/BlockSolverInterfaces.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,95 @@

abstract type SolverBlock end

abstract type LinearSolverBlock <: SolverBlock end
abstract type NonlinearSolverBlock <: SolverBlock end

is_nonlinear(::LinearSolverBlock) = false
is_nonlinear(::NonlinearSolverBlock) = true

function instantiate_block_cache(block::LinearSolverBlock,mat::AbstractMatrix)
@abstractmethod
end
function instantiate_block_cache(block::NonlinearSolverBlock,mat::AbstractMatrix,x::AbstractVector)
@abstractmethod
end
function instantiate_block_cache(block::LinearSolverBlock,mat::AbstractMatrix,x::AbstractVector)
instantiate_block_cache(block,mat)
end

function update_block_cache!(cache,block::LinearSolverBlock,mat::AbstractMatrix)
return cache
end
function update_block_cache!(cache,block::NonlinearSolverBlock,mat::AbstractMatrix,x::AbstractVector)
@abstractmethod
end
function update_block_cache!(cache,block::LinearSolverBlock,mat::AbstractMatrix,x::AbstractVector)
update_block_cache!(cache,block,mat)
end

# MatrixBlock

struct MatrixBlock{A} <: LinearSolverBlock
mat :: A
function MatrixBlock(mat::AbstractMatrix)
A = typeof(mat)
return new{A}(mat)
end
end

instantiate_block_cache(block::MatrixBlock,::AbstractMatrix) = block.mat

# SystemBlocks

struct LinearSystemBlock <: LinearSolverBlock end
struct NonlinearSystemBlock <: NonlinearSolverBlock end

instantiate_block_cache(block::LinearSystemBlock,mat::AbstractMatrix) = mat
instantiate_block_cache(block::NonlinearSystemBlock,mat::AbstractMatrix,::AbstractVector) = mat
update_block_cache!(cache,block::NonlinearSystemBlock,mat::AbstractMatrix,::AbstractVector) = mat

# BiformBlock/TriformBlock
struct BiformBlock <: LinearSolverBlock
f :: Function
trial :: FESpace
test :: FESpace
assem :: Assembler
function BiformBlock(f::Function,
trial::FESpace,
test::FESpace,
assem=SparseMatrixAssembler(trial,test))
return new(f,trial,test,assem)
end
end

struct TriformBlock <: NonlinearSolverBlock
f :: Function
trial :: FESpace
test :: FESpace
assem :: Assembler
function TriformBlock(f::Function,
trial::FESpace,
test::FESpace,
assem=SparseMatrixAssembler(trial,test))
return new(f,trial,test,assem)
end
end

function instantiate_block_cache(block::BiformBlock,mat::AbstractMatrix)
return assemble_matrix(block.f,block.assem,block.trial,block.test)
end

function instantiate_block_cache(block::TriformBlock,mat::AbstractMatrix,x::AbstractVector)
uh = FEFunction(block.trial,x)
f(u,v) = block.f(uh,u,v)
return assemble_matrix(f,block.assem,block.trial,block.test)
end

function update_block_cache!(cache,block::TriformBlock,mat::AbstractMatrix,x::AbstractVector)
uh = FEFunction(block.trial,x)
f(u,v) = block.f(uh,u,v)
assemble_matrix!(mat,f,block.assem,block.trial,block.test)
end

# CompositeBlock
# How do we deal with different sparsity patterns? Not trivial...
28 changes: 28 additions & 0 deletions src/BlockSolvers/BlockSolvers.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
module BlockSolvers
using LinearAlgebra
using SparseArrays
using SparseMatricesCSR
using BlockArrays
using IterativeSolvers

using Gridap
using Gridap.Helpers, Gridap.Algebra, Gridap.CellData, Gridap.Arrays, Gridap.FESpaces, Gridap.MultiField
using PartitionedArrays
using GridapDistributed

using GridapSolvers.MultilevelTools
using GridapSolvers.SolverInterfaces

include("BlockFEOperators.jl")

include("BlockSolverInterfaces.jl")
include("BlockDiagonalSolvers.jl")
include("BlockTriangularSolvers.jl")

export BlockFEOperator

export MatrixBlock, LinearSystemBlock, NonlinearSystemBlock, BiformBlock, TriformBlock

export BlockDiagonalSolver
export BlockTriangularSolver
end
Loading
Loading