An Erlang implementation of Facebook's GraphQL.
This is the core GraphQL query parsing and execution engine which goal is to be transport, server and datastore agnostic.
This is a work in progress, here's todo list:
- Parser for GraphQL
- Schema definition
- Query execution
- Pre-defined basic scalar types
- Complex types (List, Object, Union, etc)
- Arguments
- Variables
- Fragments and inline fragments in queries
- Custom types
- Parallel execution
- Return maps option
- Mutations
- Subscriptions
- Introspection
- Directives
- "Compile" and validate schema before start the app
- GraphQL Guard (may be another app)
- Calculate query/mutation complexity
- White list of queries with big complexity
Rebar3 - hex package
{deps, [
{graphql, "0.2.10", {pkg, graphql_erlang}}
]}.
Rebar - git with version tag
{deps, [
{graphql, "", {git, "https://github.com/graphql-erlang/graphql.git", {tag, "v0.2.10"}}}
]]
First - define you schema:
-module(graphql_example).
-export([schema/0]).
-include_lib("graphql/include/types.hrl").
schema() -> ?SCHEMA(#{
query => query()
}).
query() -> ?OBJECT("QueryRoot", "Example Query", #{
"greatings" => ?FIELD(?STRING, "Greating", #{
"name" => ?ARG(?NON_NULL(?STRING) "The name of who you'd like to great")
},
fun(_ParrentObject, Args, _Context) ->
maps:get(<<"name">>, Args)
end
)
}).
In handler - call query for schema with optional options:
Document = <<"query($name: String!) { greatings(name: $name) }">>, % or list
Context = #{}, % you can pass request through context or whatever you want use in resolver acress the schema
InitValue = #{}, % root value, passed to query/mutation root resolver
VariableValues = #{ % variables passed with query
<<"name">> => <<"world">>
},
Result = graphql:execute(graphql_example:schema(), Document, InitValue, Context),
io:format("Result: ~p~n", [Result]). % #{data => [{<<"name">>, <<"world">>}]}
We provide macros for simple types definition. Include: -include_lib("graphql/include/types.hrl").
All values for types can be null
except ?NON_NULL
and ObjectType
?BOOLEAN
- boolean type. Represent atoms true/false.
?FLOAT
and ?INT
- represent float and integer.
?LIST(OfType)
- represent list where OfType
- inner list type. Example: ?LIST(?INT)
- [Int]
?NON_NULL(OfType)
- non nullable type - wrapper over nullable type. Example: ?NON_NULL(?LIST(?INT))
- [Int]!
?STRING
- binary string
?ENUM(Name, Description, EnumValues)
- enumaration:
my_enum() -> ?ENUM("MyEnum", "MyEnumDescription", [
% ?ENUM_VAL(InternalValue, EnumValue, Description, Options) % Options - optional
?ENUM_VAL(1, "ONE", "REPRESENT 1"),
?DEPRECATED("Deprecation reason", ?ENUM_VAL(2, "TWO", "Deprecated exempla"))
]).
?DEPRECATED(Reason, FieldOrEnumVal)
- mark whole field or enum value deprecated
?OBJECT(Name, Fields)
or ?OBJECT(Name, Description, Fields)
- declare object type. Name and Description can be list - it automatically converts to binary. Fields should be map.
?FIELD(Type)
or ?FIELD(Type, Description)
or ?FIELD(Type, Description, Resolver)
or ?FIELD(Type, Description, Args, Resolver)
?ARG(Type)
or ?ARG(Type, Description)
or ?ARG(Type, DefaultValue, Description)
- define argument item
The most basic components of a GraphQL schema are object types, which just represent a kind of object you can fetch from your service, and what fields it has.
Creating object type example:
?OBJECT("Name", "Description", #{
"field_name" => ?DEPRECATED("Human redable deprecation reason", ?FIELD(
?STRING, % what type of value returned by resolver
"Human redable description", % optional - can be null
#{ % map of field arguments
"arg_name">> => ?ARG(?STRING, <<"Default value">>, "Optional description")
}
fun() -> <<"resolved string">> end % resolver function
))
}).
Resolver - function that resolves field value. Arity and arguments passing:
case erlang:fun_info(Resolver, arity) of
{arity, 0} -> Resolver();
{arity, 1} -> Resolver(ObjectValue);
{arity, 2} -> Resolver(ObjectValue, ArgumentValues);
{arity, 3} -> Resolver(ObjectValue, ArgumentValues, Context)
end.
where:
ObjectValue
- result of the parent resolver (or InitialValue for query root)ArgumentsValues
- map of arguments. When argument not provided in query - value is 'null'Context
- context from parent resolver.
Resolver can return resolved value witch passed to scalar serialize function if type is scalar or as ObjectValue for each field in child object type
Resolver can also overwrite context for his childrens. In this case resolver may look like:
resolver => fun(_,_,Context) ->
{overvrite_context,
<<"resolved string">>,
Context#{
additional_context_data => <<"Data">>
}
}
end
NOTE: additional_context_data avaliable only for children object type in query
?UNION(Name, Description, PossibleTypes, ResolveTypeFun)
- type can be one of the listed in PossibleTypes. PossibleTypes must be list of ObjectTypes.
Example:
Type definitions:
one() -> ?OBJECT("One", "Has field named one", #{
"one" => ?ARG(?INT)
}).
two() -> ?OBJECT("Two", "Has field named two", #{
"two" => ?ARG(?INT)
}).
union_default() -> ?UNION("UnionDefaultResolve", "Used default type resolver", [
fun one/0,
fun two/0
]).
union_custom() -> ?UNION("UnionCastomResolve", "Used custom type resolver", [
fun one/0,
fun two/0
], fun(Value, _ThisTypeDefinition)->
Type = case maps:get(<<"one">>, Value, undefined) of
undefined -> fun two/0;
_ -> fun one/0
end,
{Type, Value} % resolver should return tuple {ResolvedType, UnwrappedValue}
end).
Object definition:
test_unions() -> ?OBJECT("TestUnions", "", #{
"default_resolver" => ?FIELD(?LIST(fun unions_default/0), "Default resolver example",
% default resolver just compares first elem in tuple with possibleTypes in union
fun() ->
[
{fun one/0, #{<<"one">> => 1}},
{fun two/0, #{<<"two">> => 2}},
{fun one/0, #{<<"one">> => 3}}
]
end
),
"custom_resolver" => ?FIELD(?LIST(fun unions_custom/0), "Custom resolver example",
fun()->
[
#{<<"one">> => 1},
#{<<"two">> => 2},
#{<<"one">> => 3}
]
end
)
}).
custom_type()-> #{
kind => 'SCALAR', % required kind for scalar type
name => 'IntCustom', % atom
ofType => null, % used for nested data types
description => <<
"The `Int` scalar type represents non-fractional signed whole numeric ",
"values. Int can represent values between -(2^53 - 1) and 2^53 - 1 since ",
"represented in JSON as double-precision floating point numbers specified ",
"by [IEEE 754](http://en.wikipedia.org/wiki/IEEE_floating_point)."
>>,
% this function serialize resolved value
% Serialize(Result, FieldType, Context);
serialize => fun serialize/3,
% this function parse variable value
% ParseValue(maps:get(VariableName, VariableValues, null), ArgumentType);
parse_value => fun parse_value/2,
% this function parse value defined in query
% ParseLiteral(Value, ArgumentType)
parse_literal => fun parse_literal/2
}.
Thanks graphql-elixir for great lex/yecc erlang parser :)