Skip to content

"20 newsgroups" dataset - Text Classification using Multinomial Naive Bayes in Python.

Notifications You must be signed in to change notification settings

gokriznastic/20-newsgroups_text-classification

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 

Repository files navigation

Text Classification in Python using the 20 newsgroup dataset.

"20 newsgroups" dataset - Text Classification using Python.

Dataset

For dataset I used the famous "20 Newsgroups" dataset.

The data set is a collection of approximately 20,000 newsgroup documents, partitioned (nearly) evenly across 20 different newsgroups. I've included the dataset in the repo, located at 20_newsgroups\ directory.

You can find the dataset freely here.

The code

The code is pretty straight forward and well documented. The preprocessing of the documents and the implementation of classifiers have been done from scratch and then the results have been compared to inbuilt sklearn's classifiers. The code has been arranged in form of IPython Notebooks, each notebook corresponds to a particular "classifier" or "technique" used for classifying the dataset.

Requirements

  • python 2.7 or above

  • python modules:

    • scikit-learn
    • numpy
    • matplotlib

Experiments

For each experiment we use a "feature vector", a "classifier" and a train-test splitting strategy.

Experiment 1: BOW - NB - 25% test

In this experiment we use a Bag Of Words (BOW) representation of each document containing Term Frequency. And also a Multinomial Naive Bayes (NB) classifier.

Experiment 12: TF-IDF - NB - 25% test

Ongoing

About

"20 newsgroups" dataset - Text Classification using Multinomial Naive Bayes in Python.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published