Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

CUDA: non-contiguous (RMS) norm support #11659

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions ggml/src/ggml-cuda/ggml-cuda.cu
Original file line number Diff line number Diff line change
Expand Up @@ -38,6 +38,7 @@
#include "ggml-cuda/upscale.cuh"
#include "ggml-cuda/wkv6.cuh"
#include "ggml-cuda/gla.cuh"
#include "ggml.h"

#include <algorithm>
#include <array>
Expand Down Expand Up @@ -3139,6 +3140,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
break;
case GGML_OP_NORM:
case GGML_OP_RMS_NORM:
return true;
case GGML_OP_RMS_NORM_BACK:
return ggml_is_contiguous(op->src[0]) && op->ne[0] % WARP_SIZE == 0;
break;
Expand Down Expand Up @@ -3181,7 +3183,9 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_OP_SUM_ROWS:
case GGML_OP_ARGSORT:
case GGML_OP_ACC:
return true;
case GGML_OP_GROUP_NORM:
return ggml_is_contiguous(op->src[0]);
case GGML_OP_UPSCALE:
case GGML_OP_PAD:
case GGML_OP_ARANGE:
Expand Down
89 changes: 57 additions & 32 deletions ggml/src/ggml-cuda/norm.cu
Original file line number Diff line number Diff line change
@@ -1,12 +1,20 @@
#include "norm.cuh"
#include <cstdint>

template <int block_size>
static __global__ void norm_f32(const float * x, float * dst, const int ncols, const float eps) {
const int row = blockIdx.x*blockDim.y + threadIdx.y;
const int tid = threadIdx.x;
static __global__ void norm_f32(
const float * x, float * dst, const int ncols, const int64_t stride_row, const int64_t stride_channel,
const int64_t stride_sample, const float eps) {
const int nrows = gridDim.x;
const int nchannels = gridDim.y;

x += int64_t(row)*ncols;
dst += int64_t(row)*ncols;
const int row = blockIdx.x;
const int channel = blockIdx.y;
const int sample = blockIdx.z;
const int tid = threadIdx.x;

x += sample*stride_sample + channel*stride_channel + row*stride_row;
dst += ((sample*nchannels + channel)*nrows + row)*ncols;

float2 mean_var = make_float2(0.0f, 0.0f);

Expand Down Expand Up @@ -97,12 +105,19 @@ static __global__ void group_norm_f32(const float * x, float * dst, const int gr
}

template <int block_size>
static __global__ void rms_norm_f32(const float * x, float * dst, const int ncols, const float eps) {
const int row = blockIdx.x*blockDim.y + threadIdx.y;
const int tid = threadIdx.x;
static __global__ void rms_norm_f32(
const float * x, float * dst, const int ncols, const int64_t stride_row, const int64_t stride_channel,
const int64_t stride_sample, const float eps) {
const int nrows = gridDim.x;
const int nchannels = gridDim.y;

const int row = blockIdx.x;
const int channel = blockIdx.y;
const int sample = blockIdx.z;
const int tid = threadIdx.x;

x += int64_t(row)*ncols;
dst += int64_t(row)*ncols;
x += sample*stride_sample + channel*stride_channel + row*stride_row;
dst += ((sample*nchannels + channel)*nrows + row)*ncols;

float tmp = 0.0f; // partial sum for thread in warp

Expand Down Expand Up @@ -186,13 +201,16 @@ static __global__ void rms_norm_back_f32(
}
}

static void norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
static void norm_f32_cuda(
const float * x, float * dst, const int ncols, const int nrows, const int nchannels, const int nsamples,
const int64_t stride_row, const int64_t stride_channel, const int64_t stride_sample, const float eps, cudaStream_t stream) {
const dim3 blocks_num(nrows, nchannels, nsamples);
if (ncols < 1024) {
const dim3 block_dims(WARP_SIZE, 1, 1);
norm_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
norm_f32<WARP_SIZE><<<blocks_num, block_dims, 0, stream>>>(x, dst, ncols, stride_row, stride_channel, stride_sample, eps);
} else {
const dim3 block_dims(1024, 1, 1);
norm_f32<1024><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
norm_f32<1024><<<blocks_num, block_dims, 0, stream>>>(x, dst, ncols, stride_row, stride_channel, stride_sample, eps);
}
}

Expand All @@ -207,13 +225,16 @@ static void group_norm_f32_cuda(
}
}

static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
static void rms_norm_f32_cuda(
const float * x, float * dst, const int ncols, const int nrows, const int nchannels, const int nsamples,
const int64_t stride_row, const int64_t stride_channel, const int64_t stride_sample, const float eps, cudaStream_t stream) {
const dim3 blocks_num(nrows, nchannels, nsamples);
if (ncols < 1024) {
const dim3 block_dims(WARP_SIZE, 1, 1);
rms_norm_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
rms_norm_f32<WARP_SIZE><<<blocks_num, block_dims, 0, stream>>>(x, dst, ncols, stride_row, stride_channel, stride_sample, eps);
} else {
const dim3 block_dims(1024, 1, 1);
rms_norm_f32<1024><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
rms_norm_f32<1024><<<blocks_num, block_dims, 0, stream>>>(x, dst, ncols, stride_row, stride_channel, stride_sample, eps);
}
}

Expand All @@ -229,23 +250,26 @@ static void rms_norm_back_f32_cuda(const float * grad, const float * xf, float *

void ggml_cuda_op_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const float * src0_d = (const float *)src0->data;
float * dst_d = (float *)dst->data;
const float * src0_d = (const float *) src0->data;
float * dst_d = (float *) dst->data;
cudaStream_t stream = ctx.stream();

GGML_ASSERT(ggml_is_contiguous(src0));

GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);

const int64_t ne00 = src0->ne[0];
const int64_t nrows = ggml_nrows(src0);
GGML_TENSOR_UNARY_OP_LOCALS;

float eps;
memcpy(&eps, dst->op_params, sizeof(float));
GGML_ASSERT(eps >= 0.0f);

norm_f32_cuda(src0_d, dst_d, ne00, nrows, eps, stream);
const size_t ts0 = ggml_type_size(src0->type);
GGML_ASSERT(nb00 == ts0);
const int64_t s01 = nb01 / ts0;
const int64_t s02 = nb02 / ts0;
const int64_t s03 = nb03 / ts0;

norm_f32_cuda(src0_d, dst_d, ne00, ne01, ne02, ne03, s01, s02, s03, eps, stream);
}

void ggml_cuda_op_group_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
Expand All @@ -254,8 +278,6 @@ void ggml_cuda_op_group_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst)
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();

GGML_ASSERT(ggml_is_contiguous(src0));

GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);

Expand All @@ -271,23 +293,26 @@ void ggml_cuda_op_group_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst)

void ggml_cuda_op_rms_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const float * src0_d = (const float *)src0->data;
float * dst_d = (float *)dst->data;
const float * src0_d = (const float *) src0->data;
float * dst_d = (float *) dst->data;
cudaStream_t stream = ctx.stream();

GGML_ASSERT(ggml_is_contiguous(src0));

GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);

const int64_t ne00 = src0->ne[0];
const int64_t nrows = ggml_nrows(src0);
GGML_TENSOR_UNARY_OP_LOCALS;

float eps;
memcpy(&eps, dst->op_params, sizeof(float));
GGML_ASSERT(eps >= 0.0f);

rms_norm_f32_cuda(src0_d, dst_d, ne00, nrows, eps, stream);
const size_t ts0 = ggml_type_size(src0->type);
GGML_ASSERT(nb00 == ts0);
const int64_t s01 = nb01 / ts0;
const int64_t s02 = nb02 / ts0;
const int64_t s03 = nb03 / ts0;

rms_norm_f32_cuda(src0_d, dst_d, ne00, ne01, ne02, ne03, s01, s02, s03, eps, stream);
}

void ggml_cuda_op_rms_norm_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
Expand Down
5 changes: 3 additions & 2 deletions ggml/src/ggml-metal/ggml-metal.m
Original file line number Diff line number Diff line change
Expand Up @@ -1206,10 +1206,11 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
case GGML_OP_GROUP_NORM:
return has_simdgroup_reduction;
case GGML_OP_RMS_NORM:
return has_simdgroup_reduction && (op->ne[0] % 4 == 0);
return has_simdgroup_reduction && (op->ne[0] % 4 == 0 && ggml_is_contiguous_1(op->src[0]));
case GGML_OP_ARGMAX:
case GGML_OP_NORM:
return true;
case GGML_OP_NORM:
return has_simdgroup_reduction && ggml_is_contiguous(op->src[0]);
case GGML_OP_ROPE:
{
const int mode = ((const int32_t *) op->op_params)[2];
Expand Down
2 changes: 2 additions & 0 deletions ggml/src/ggml-vulkan/ggml-vulkan.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -8182,9 +8182,11 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
case GGML_OP_VIEW:
case GGML_OP_PERMUTE:
case GGML_OP_TRANSPOSE:
return true;
case GGML_OP_NORM:
case GGML_OP_GROUP_NORM:
case GGML_OP_RMS_NORM:
return ggml_is_contiguous(op->src[0]);
case GGML_OP_ADD:
case GGML_OP_ACC:
case GGML_OP_MUL:
Expand Down
6 changes: 4 additions & 2 deletions src/llama.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -4610,7 +4610,8 @@ struct llm_build_context {
ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
cb(k_pe, "k_pe", il);

kv_compressed = ggml_cont(ctx0, kv_compressed); // TODO: the CUDA backend does not support non-contiguous norm
// TODO: the CUDA backend used to not support non-cont. (RMS) norm, investigate removing ggml_cont
kv_compressed = ggml_cont(ctx0, kv_compressed);
kv_compressed = llm_build_norm(ctx0, kv_compressed, hparams,
model.layers[il].attn_kv_a_norm, NULL,
LLM_NORM_RMS, cb, il);
Expand Down Expand Up @@ -6464,7 +6465,8 @@ struct llm_build_context {
ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
cb(k_pe, "k_pe", il);

kv_compressed = ggml_cont(ctx0, kv_compressed); // TODO: the CUDA backend does not support non-contiguous norm
// TODO: the CUDA backend used to not support non-cont. (RMS) norm, investigate removing ggml_cont
kv_compressed = ggml_cont(ctx0, kv_compressed);
kv_compressed = llm_build_norm(ctx0, kv_compressed, hparams,
model.layers[il].attn_kv_a_norm, NULL,
LLM_NORM_RMS, cb, il);
Expand Down
38 changes: 27 additions & 11 deletions tests/test-backend-ops.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1674,21 +1674,28 @@ struct test_silu_back : public test_case {
struct test_norm : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
float eps;
const bool v; // whether a is a non-contiguous view
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Just making a note here, we cannot keep adding parameters like to every op test case, it makes them much more complex. This will need to be refactored at some point and replaced with a generic way to create non-contiguous views for the op parameters.

const float eps;

std::string vars() override {
return VARS_TO_STR3(type, ne, eps);
return VARS_TO_STR4(type, ne, v, eps);
}

test_norm(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {64, 5, 4, 3},
bool v = false,
float eps = 1e-6f)
: type(type), ne(ne), eps(eps) {}
: type(type), ne(ne), v(v), eps(eps) {}

ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_set_name(a, "a");

if (v) {
a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
ggml_set_name(a, "view of a");
}

ggml_tensor * out = ggml_norm(ctx, a, eps);
ggml_set_name(out, "out");

Expand All @@ -1700,22 +1707,29 @@ struct test_norm : public test_case {
struct test_rms_norm : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
float eps;
const bool v; // whether a is a non-contiguous view
const float eps;

std::string vars() override {
return VARS_TO_STR3(type, ne, eps);
return VARS_TO_STR4(type, ne, v, eps);
}

test_rms_norm(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne = {64, 5, 4, 3},
bool v = false,
float eps = 1e-6f)
: type(type), ne(ne), eps(eps) {}
: type(type), ne(ne), v(v), eps(eps) {}

ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
ggml_set_param(ctx, a);
ggml_set_name(a, "a");

if (v) {
a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
ggml_set_name(a, "view of a");
}

ggml_tensor * out = ggml_rms_norm(ctx, a, eps);
ggml_set_name(out, "out");

Expand All @@ -1741,7 +1755,7 @@ struct test_rms_norm : public test_case {
struct test_rms_norm_back : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne;
float eps;
const float eps;

std::string vars() override {
return VARS_TO_STR3(type, ne, eps);
Expand Down Expand Up @@ -2919,7 +2933,7 @@ struct test_group_norm : public test_case {
const float eps;

std::string vars() override {
return VARS_TO_STR3(type, ne, num_groups);
return VARS_TO_STR4(type, ne, num_groups, eps);
}

test_group_norm(ggml_type type = GGML_TYPE_F32,
Expand Down Expand Up @@ -3964,9 +3978,11 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
test_cases.emplace_back(new test_scale());
test_cases.emplace_back(new test_silu_back());

for (float eps : {0.0f, 1e-7f, 1e-4f, 1e-1f}) {
test_cases.emplace_back(new test_norm (GGML_TYPE_F32, {64, 5, 4, 3}, eps));
test_cases.emplace_back(new test_rms_norm (GGML_TYPE_F32, {64, 5, 4, 3}, eps));
for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f}) {
for (bool v : {false, true}) {
test_cases.emplace_back(new test_norm (GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
}
test_cases.emplace_back(new test_rms_norm_back(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
}

Expand Down
Loading