Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

HellaSwag: speed up by parallelizing log-prob evaluation #5020

Merged
merged 1 commit into from
Jan 18, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
80 changes: 66 additions & 14 deletions examples/perplexity/perplexity.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@
#include <sstream>
#include <thread>
#include <mutex>
#include <atomic>
#include <vector>
#include <array>
#include <fstream>
Expand Down Expand Up @@ -444,6 +445,48 @@ static std::vector<float> evaluate_tokens(llama_context * ctx, std::vector<int>
return result;
}

static void hellaswag_compute_logprobs(const float * batch_logits, int n_vocab, std::vector<std::thread>& workers,
const std::vector<std::pair<size_t, llama_token>>& eval_pairs, std::vector<float>& eval_results) {
constexpr int k_token_chunk = 4;
if (eval_results.size() != eval_pairs.size()) {
eval_results.resize(eval_pairs.size());
}
if (eval_pairs.empty()) return;

size_t max_threads = std::min((eval_pairs.size() + k_token_chunk - 1)/k_token_chunk, workers.size());

std::atomic<int> counter(0);
auto compute = [&counter, &eval_pairs, &eval_results, batch_logits, n_vocab] () {
float local_logprobs[k_token_chunk];
while (true) {
size_t first = counter.fetch_add(k_token_chunk, std::memory_order_relaxed);
if (first >= eval_results.size()) break;
size_t last = std::min(first + k_token_chunk, eval_results.size());
for (size_t i = first; i < last; ++i) {
auto logits = batch_logits + eval_pairs[i].first * n_vocab;
float max_logit = logits[0];
for (int j = 1; j < n_vocab; ++j) {
max_logit = std::max(max_logit, logits[j]);
}
float sum_p = 0.f;
for (int j = 0; j < n_vocab; ++j) {
sum_p += expf(logits[j] - max_logit);
}
local_logprobs[i - first] = logits[eval_pairs[i].second] - max_logit - std::log(sum_p);
}
std::memcpy(eval_results.data() + first, local_logprobs, (last - first)*sizeof(float));
}
};

for (size_t it = 0; it < max_threads; ++it) {
workers[it] = std::thread(compute);
}
for (size_t it = 0; it < max_threads; ++it) {
workers[it].join();
}

}

static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
// Calculates hellaswag score (acc_norm) from prompt
//
Expand Down Expand Up @@ -574,6 +617,10 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
std::vector<float> tok_logits(n_vocab);
std::vector<float> batch_logits(n_ctx*n_vocab);

std::vector<std::pair<size_t, llama_token>> eval_pairs;
std::vector<float> eval_results;
std::vector<std::thread> workers(std::thread::hardware_concurrency());

auto decode_helper = [&](llama_context * ctx, llama_batch & batch, int32_t n_batch) {
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) {
const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
Expand Down Expand Up @@ -654,6 +701,24 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
return;
}

// Compute log-probs in parallel
// First we collect all tasks
eval_pairs.clear();
for (size_t i = i0; i < i1; ++i) {
auto & hs_cur = hs_data[i];
size_t li = hs_cur.common_prefix;
for (int s = 0; s < 4; ++s) {
for (size_t j = hs_cur.common_prefix; j < hs_cur.seq_tokens[s].size() - 1; j++) {
eval_pairs.push_back(std::make_pair(hs_cur.i_batch + li++, hs_cur.seq_tokens[s][j + 1]));
}
++li;
}
}
// Then we do the actual calculation
hellaswag_compute_logprobs(batch_logits.data(), n_vocab, workers, eval_pairs, eval_results);

size_t ir = 0;

// compute the logprobs for each ending of the decoded tasks
for (size_t i = i0; i < i1; ++i) {
auto & hs_cur = hs_data[i];
Expand All @@ -662,26 +727,13 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {

const auto first_probs = softmax(tok_logits);

size_t li = hs_cur.common_prefix; // logits index in the batch

for (int s = 0; s < 4; ++s) {
hs_cur.ending_logprob_count[s] = 1;
hs_cur.ending_logprob[s] = std::log(first_probs[hs_cur.seq_tokens[s][hs_cur.common_prefix]]);

// Calculate the logprobs over the ending
for (size_t j = hs_cur.common_prefix; j < hs_cur.seq_tokens[s].size() - 1; j++) {
std::memcpy(tok_logits.data(), batch_logits.data() + n_vocab*(hs_cur.i_batch + li++), n_vocab*sizeof(float));

const float prob = softmax(tok_logits)[hs_cur.seq_tokens[s][j + 1]];

hs_cur.ending_logprob[s] += std::log(prob);
hs_cur.ending_logprob[s] += eval_results[ir++];
hs_cur.ending_logprob_count[s]++;
}

// account that we skip the last token in the ending
++li;

// Calculate the mean token logprob for acc_norm
hs_cur.ending_logprob[s] /= hs_cur.ending_logprob_count[s];
}

Expand Down
Loading