Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add AWQ (Activation-aware Weight Quantization) for llama, llama2, mpt, and mistral models #4593

Merged
merged 34 commits into from
Dec 27, 2023
Merged
Show file tree
Hide file tree
Changes from 29 commits
Commits
Show all changes
34 commits
Select commit Hold shift + click to select a range
2ea3934
update: awq support llama-7b model
Dec 14, 2023
8a3cece
update: change order
Dec 14, 2023
0adf4c7
update: benchmark results for llama2-7b
Dec 16, 2023
e851199
update: mistral 7b v1 benchmark
Dec 18, 2023
eb9a790
update: support 4 models
Dec 18, 2023
576d28b
fix: Readme
Dec 18, 2023
4cad8d7
update: ready for PR
Dec 19, 2023
f97c587
update: readme
Dec 19, 2023
ef61a66
fix: readme
Dec 19, 2023
f8cf783
update: change order import
Dec 19, 2023
1b300cb
black
Dec 19, 2023
8fece75
format code
Dec 19, 2023
8177ad4
update: work for bot mpt and awqmpt
Dec 19, 2023
d2e9d00
update: readme
Dec 19, 2023
0610672
Rename to llm_build_ffn_mpt_awq
Dec 20, 2023
c02f6df
Formatted other files
Dec 20, 2023
71c0a27
Fixed params count
Dec 20, 2023
741b7fb
Merge branch 'github' of https://gitlab.vinai.io/mlbooster/llama.cpp …
Dec 20, 2023
e04b8f0
fix: remove code
Dec 22, 2023
48cd819
update: more detail for mpt
Dec 22, 2023
6fcdb07
fix: readme
Dec 22, 2023
b00e2d9
fix: readme
Dec 22, 2023
440cc2f
update: change folder architecture
Dec 22, 2023
00f48ad
fix: common.cpp
Dec 22, 2023
9b742c5
fix: readme
Dec 22, 2023
e8fae2d
Merge branch 'master' of https://github.com/ggerganov/llama.cpp into …
Dec 22, 2023
a600c61
fix: remove ggml_repeat
namtranase Dec 22, 2023
2187a8d
update: cicd
namtranase Dec 22, 2023
e9ad5fe
update: cicd
namtranase Dec 23, 2023
13f60c4
uppdate: remove use_awq arg
namtranase Dec 25, 2023
44f4ce2
Merge branch 'master' of https://github.com/namtranase/llama.cpp
namtranase Dec 25, 2023
d089842
update: readme
namtranase Dec 25, 2023
278f3e9
Merge branch 'master' into HEAD
ggerganov Dec 27, 2023
9174699
llama : adapt plamo to new ffn
ggerganov Dec 27, 2023
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
120 changes: 120 additions & 0 deletions awq-py/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,120 @@
# AWQ: Activation-aware Weight Quantization for LLM - version apply to llamacpp
[[Paper](https://arxiv.org/abs/2306.00978)][[Original Repo](https://github.com/mit-han-lab/llm-awq)][[Easy-to-use Repo](https://github.com/casper-hansen/AutoAWQ)]

**Supported models:**

- [X] LLaMA
- [x] LLaMA 2
- [X] MPT
- [X] Mistral AI v0.1
- [ ] Bloom
- [ ] Mixtral MoE

**TODO:**
- [x] Update version work with both MPT and MPT-AWQ model
- [ ] Add OPT model
- [ ] Add Bloom model
- [ ] Add Mixtral MoE
- [ ] Support w3, w2


## Contents

- [Install](##Install)
- [Convert](##Convert)
- [Quantize](##Quantize)
- [Test](##Test)
- [Benchmark](##Benchmark)
- [Results](##Results)

## Install
Install requirements
```bash
pip install -r requirements.txt
```
Get the pre-computed AWQ search results for multiple model families, including LLaMA, LLaMA2, MPT, OPT
```bash
git clone https://huggingface.co/datasets/mit-han-lab/awq-model-zoo awq_cache
```

## Convert
Example for llama model
```bash
# For llama7b and llama2 models
python convert.py models/llama-7b/ --awq-path awq_cache/llama-7b-w4-g128.pt --outfile models/llama_7b_fp16.gguf
# For mistral and mpt models
python convert-hf-to-gguf.py models/mpt-7b/ --awq-path awq_cache/llama-7b-w4-g128.pt --outfile models/mpt_7b_fp16.gguf
```

## Quantize
```bash
# We only benchmark and confirm the results on q4_0, q4_1, and q2_k types.
./quantize models/llama_7b_fp16.gguf models/llama_7b_q4_0.gguf q4_0
```

## Test
```bash
# For llama and llama2, and mistral models.
./build/bin/main -m models/llama_7b_q4_0.gguf -n 128 --prompt "Once upon a time"
ggerganov marked this conversation as resolved.
Show resolved Hide resolved
# For mpt models.
./build/bin/main -m models/mpt_7b_q4_0.gguf --use-awq -n 128 --prompt "Once upon a time"
```

## Benchmark
The perplexity measurements in table above are done against the `wikitext2` test dataset (https://paperswithcode.com/dataset/wikitext-2), with context length of 512.
```bash
# For llama and llama2, and mistral models.
./perplexity -m models/llama_7b_q4_0.gguf -f datasets/wikitext-2-raw/wiki.test.raw
# For mpt models.
./perplexity -m models/mpt_7b_q4_0.gguf --use-awq -f datasets/wikitext-2-raw/wiki.test.raw
```

## Results
Results are run on OpenBLAS (CPU) and CuBLAS (GPU) for fair comparison
We use three types of llamacpp quantization methods to work with our version, including q4_0, q4_1, and q2_k

### Llama 7B (Build with OpenBLAS)

| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K |
|-----------:|--------------|-------:|-------:|-------:|-------:|
|Llama 7B | perplexity | 5.9066 | 6.1214 | 6.0643 | 6.5808 |
|Llama 7B | file size | 12.9G | 3.5G | 3.9G | 2.7G |
|Llama 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|AWQ-LLama 7B| perplexity | 5.9175 | 6.0252 | 5.9987 | 6.3692 |
|AWQ-LLama 7B| file size | 12.9G | 3.5G | 3.9G | 2.7G |
|AWQ-LLama 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |


### Llama2 7B (Build with CuBLAS)

| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K |
|------------:|--------------|-------:|-------:|-------:|-------:|
|Llama2 7B | perplexity | 5.8664 | 6.0260 | 6.0656 | 6.4496 |
|Llama2 7B | file size | 12.9G | 3.5G | 3.9G | 2.7G |
|Llama2 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|AWQ-LLama2 7B| perplexity | 5.8801 | 6.0054 | 5.9849 | 6.3650 |
|AWQ-LLama2 7B| file size | 12.9G | 3.5G | 3.9G | 2.7G |
|AWQ-LLama2 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |


### Mistral 7B v0.1 (Build with CuBLAS)

| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K |
|-------------:|--------------|-------:|-------:|-------:|-------:|
|Mistral 7B | perplexity | 5.6931 | 5.8202 | 5.8268 | 6.1645 |
|Mistral 7B | file size | 14.5G | 4.1G | 4.5G | 3.1G |
|Mistral 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|AWQ-Mistral 7B| perplexity | 5.6934 | 5.8020 | 5.7691 | 6.0426 |
|AWQ-Mistral 7B| file size | 14.5G | 4.1G | 4.5G | 3.1G |
|AWQ-Mistral 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |

### MPT 7B (Build with OpenBLAS)

| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K |
|---------:|--------------|-------:|-------:|-------:|--------:|
|MPT 7B | perplexity | 8.4369 | 8.7956 | 8.6265 | 11.4913 |
|MPT 7B | file size | 13.7G | 3.9G | 4.3G | 2.8G |
|MPT 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|AWQ-MPT 7B| perplexity | 8.4944 | 8.7053 | 8.6750 | 10.2873|
|AWQ-MPT 7B| file size | 13.7G | 3.9G | 4.3G | 2.8G |
|AWQ-MPT 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
254 changes: 254 additions & 0 deletions awq-py/awq/apply_awq.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,254 @@
"""
Implements the AWQ for llama.cpp use cases.
Original paper: https://arxiv.org/abs/2306.00978

This code is based on versions of the AWQ implementation found in the following repositories:
* https://github.com/mit-han-lab/llm-awq
* https://github.com/casper-hansen/AutoAWQ
"""

import os
import torch
import torch.nn as nn

from transformers import AutoModelForCausalLM, AutoConfig
from transformers.models.bloom.modeling_bloom import BloomGelu
from transformers.models.llama.modeling_llama import LlamaRMSNorm
from transformers.activations import GELUActivation


class ScaledActivation(nn.Module):
"""
ScaledActivation module wraps an existing activation function and applies a
scale factor to its output.

Args:
module (nn.Module): The activation function to be scaled.
scales (torch.Tensor): A tensor of size (num_features,) containing the initial
scale factors for each feature.

Returns:
torch.Tensor: The scaled output of the activation function.
"""

def __init__(self, module, scales):
super().__init__()
self.act = module
self.scales = nn.Parameter(scales.data)

def forward(self, x):
return self.act(x) / self.scales.view(1, 1, -1).to(x.device)


def set_op_by_name(layer, name, new_module):
"""
Set the new module for given module's name.

Args:
layer (nn.Module): The layer in which to replace the submodule.
name (str): The path to the submodule to be replaced, using dot notation
to access nested modules.
new_module (nn.Module): The new module to replace the existing one.
"""
levels = name.split(".")
if len(levels) > 1:
mod_ = layer
for l_idx in range(len(levels) - 1):
if levels[l_idx].isdigit():
mod_ = mod_[int(levels[l_idx])]
else:
mod_ = getattr(mod_, levels[l_idx])
setattr(mod_, levels[-1], new_module)
else:
setattr(layer, name, new_module)


def get_op_by_name(module, op_name):
"""
Retrieves a submodule within a given layer based on its name.

Args:
module (nn.Module): The layer containing the submodule to find.
op_name (str): The name of the submodule.

Returns:
nn.Module: The requested submodule found within the given layer.

Raises:
ValueError: If the specified submodule cannot be found within the layer.
"""
for name, m in module.named_modules():
if name == op_name:
return m
raise ValueError(f"Cannot find op {op_name} in module {module}")


@torch.no_grad()
def scale_ln_fcs(ln, fcs, scales):
"""
Scales the weights of a LayerNorm and a list of fully-connected layers proportionally.

Args:
ln (nn.LayerNorm): The LayerNorm module to be scaled.
fcs (List[nn.Linear]): A list of fully-connected layers to be scaled.
scales (torch.Tensor): A 1D tensor of size (num_features,).
"""

if not isinstance(fcs, list):
fcs = [fcs]

scales = scales.to(ln.weight.device)

ln.weight.div_(scales)
if hasattr(ln, "bias") and ln.bias is not None:
ln.bias.div_(scales)

for fc in fcs:
fc.weight.mul_(scales.view(1, -1))

for p in ln.parameters():
assert torch.isnan(p).sum() == 0
for fc in fcs:
for p in fc.parameters():
assert torch.isnan(p).sum() == 0


@torch.no_grad()
def scale_fc_fc(fc1, fc2, scales):
"""
Scales the weights of two fully-connected layers in a specific pattern.

Args:
fc1 (nn.Linear): The first fully-connected layer to be scaled.
fc2 (nn.Linear): The second fully-connected layer to be scaled.
scales (torch.Tensor): A 1D tensor of size (num_features,).
"""
assert isinstance(fc1, nn.Linear)
assert isinstance(fc2, nn.Linear)

scales = scales.to(fc1.weight.device)

fc1.weight[-scales.size(0):].div_(scales.view(-1, 1))
if fc1.bias is not None:
fc1.bias.div_(scales.view(-1))

fc2.weight.mul_(scales.view(1, -1))

for p in fc1.parameters():
assert torch.isnan(p).sum() == 0
for p in fc2.parameters():
assert torch.isnan(p).sum() == 0


@torch.no_grad()
def scale_gelu_fc(gelu, fc, scales):
"""
Scales the weight of a GELU activation and a fully-connected layer proportionally.

Args:
gelu (Union[nn.GELU, BloomGelu, GELUActivation]): The GELU activation module to be scaled.
fc (nn.Linear): The fully-connected layer to be scaled.
scales (torch.Tensor): A 1D tensor of size (num_features,).

Raises:
TypeError: If the `gelu` module is not of type `nn.GELU`, `BloomGelu`, or `GELUActivation`.
TypeError: If the `fc` module is not of type `nn.Linear`.
"""
assert isinstance(gelu, (nn.GELU, BloomGelu, GELUActivation))
assert isinstance(fc, nn.Linear)

fc.weight.mul_(scales.view(1, -1).to(fc.weight.device))

for p in fc.parameters():
assert torch.isnan(p).sum() == 0


def apply_scale(module, scales_list, input_feat_dict=None):
"""
Applies different scaling strategies to layers based on their type and hierarchy within a given module.

Args:
module (nn.Module): The module containing the layers to be scaled.
scales_list (List[Tuple[str, List[str], torch.Tensor]]): A list of tuples containing:
* prev_op_name (str): The name of the preceding operation or module,
relative to which the layers to be scaled are located.
* layer_names (List[str]): A list of names of the layers to be scaled, relative to the preceding operation.
* scales (torch.Tensor): A 1D tensor of size (num_features,) containing the scaling factors for each feature.
input_feat_dict (Optional[Dict[str, torch.Tensor]]): A dictionary mapping layer names to their corresponding
input features (optional).
"""
for prev_op_name, layer_names, scales in scales_list:
prev_op = get_op_by_name(module, prev_op_name)
layers = [get_op_by_name(module, name) for name in layer_names]

prev_op.cuda()
for layer in layers:
layer.cuda()
scales.cuda()

if isinstance(prev_op, nn.Linear):
assert len(layers) == 1
scale_fc_fc(prev_op, layers[0], scales)
elif isinstance(prev_op, (nn.LayerNorm, LlamaRMSNorm)) or "rmsnorm" in str(prev_op.__class__).lower():
scale_ln_fcs(prev_op, layers, scales)
elif isinstance(prev_op, (nn.GELU, BloomGelu, GELUActivation)):
new_module = ScaledActivation(prev_op, scales)
set_op_by_name(module, prev_op_name, new_module)
scale_gelu_fc(prev_op, layers[0], scales)
else:
raise NotImplementedError(f"prev_op {type(prev_op)} not supported yet!")

# apply the scaling to input feat if given; prepare it for clipping
if input_feat_dict is not None:
for layer_name in layer_names:
inp = input_feat_dict[layer_name]
inp.div_(scales.view(1, -1).to(inp.device))

prev_op.cpu()
for layer in layers:
layer.cpu()
scales.cpu()


@torch.no_grad()
def apply_clip(module, clip_list):
"""
Applies element-wise clipping to the weight of a specific layer within a given module.

Args:
module (nn.Module): The module containing the layer to be clipped.
clip_list (List[Tuple[str, torch.Tensor]]): A list of tuples containing:
* name (str): The name of the layer to be clipped, relative to the root of the module.
* max_val (torch.Tensor): A 1D or 2D tensor defining the upper bound for each element of the layer's weight.
"""
for name, max_val in clip_list:
layer = get_op_by_name(module, name)
layer.cuda()
max_val = max_val.to(layer.weight.device)
org_shape = layer.weight.shape
layer.weight.data = layer.weight.data.reshape(*max_val.shape[:2], -1)
layer.weight.data = torch.clamp(layer.weight.data, -max_val, max_val)
layer.weight.data = layer.weight.data.reshape(org_shape)
layer.cpu()


def add_scale_weights(model_path, scale_path, tmp_path):
"""
Adds pre-computed Activation Weight Quantization (AWQ) results to a model,
including scaling factors and clipping bounds.

Args:
model_path (str): Path to the pre-trained model to be equipped with AWQ.
scale_path (str): Path to the AWQ scale factors (.pt file).
tmp_path (str): Path to the temporary directory where the equipped model will be saved.
"""
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_path, config=config, trust_remote_code=True
)
model.eval()
awq_results = torch.load(str(scale_path), map_location="cpu")
apply_scale(model, awq_results["scale"])
apply_clip(model, awq_results["clip"])
model.save_pretrained(str(tmp_path))
os.system(f"cp {str(model_path)}/tokenizer* {str(tmp_path)}")
2 changes: 2 additions & 0 deletions awq-py/requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
torch>=2.0.0
transformers>=4.32.0
Loading
Loading