Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

vulkan: scale caching for k quants + misc fixes #11081

Merged
merged 25 commits into from
Jan 15, 2025
Merged
Show file tree
Hide file tree
Changes from 24 commits
Commits
Show all changes
25 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@
*.metallib
*.o
*.so
*.swp
*.tmp

# IDE / OS
Expand Down
153 changes: 83 additions & 70 deletions ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q2_k.comp
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,79 @@

layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;

shared FLOAT_TYPE sccache1[BLOCK_SIZE/16][16];
shared FLOAT_TYPE sccache2[BLOCK_SIZE/16][16];

FLOAT_TYPE temp[NUM_COLS][NUM_ROWS];

void calc_superblock(const uint a_offset, const uint b_offset, const uint itid, const uint v_im, const uint ix, const uint q_offset, const uint y_offset, const uint i, const uint num_blocks_per_row, const uint first_row, const uint num_rows, const bool all_threads) {
const uint y_idx = i * QUANT_K + y_offset;

[[unroll]] for (uint n = 0; n < num_rows; ++n) {
const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row;

if (!all_threads) { // when we don't have enough blocks to use all threads
if (i < num_blocks_per_row) {
const uint32_t scale = uint32_t(data_a[ib0 + i].scales[itid]);
sccache1[ix][itid] = FLOAT_TYPE(scale & 0xF);
sccache2[ix][itid] = FLOAT_TYPE((scale >> 4) & 0xF);
}
barrier();

if (i >= num_blocks_per_row)
continue;
} else {
const uint32_t scale = uint32_t(data_a[ib0 + i].scales[itid]);
sccache1[ix][itid] = FLOAT_TYPE(scale & 0xF);
sccache2[ix][itid] = FLOAT_TYPE((scale >> 4) & 0xF);
barrier();
}

const uint32_t qs_u32 = uint32_t(data_a_packed16[ib0 + i].qs[q_offset / 2]) | (uint32_t(data_a_packed16[ib0 + i].qs[q_offset / 2 + 8]) << 16);
const vec4 qs_u32_0 = vec4(unpack8(qs_u32 & 0x03030303));
const vec4 qs_u32_2 = vec4(unpack8((qs_u32 >> 2) & 0x03030303));
const vec4 qs_u32_4 = vec4(unpack8((qs_u32 >> 4) & 0x03030303));
const vec4 qs_u32_6 = vec4(unpack8((qs_u32 >> 6) & 0x03030303));

vec2 d = vec2(data_a[ib0 + i].d);
const FLOAT_TYPE dall = FLOAT_TYPE(d.x);
const FLOAT_TYPE dmin = FLOAT_TYPE(d.y);

[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
vec2 b0 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 0]);
vec2 b16 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 8]);
vec2 b32 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 16]);
vec2 b48 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 24]);
vec2 b64 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 32]);
vec2 b80 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 40]);
vec2 b96 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 48]);
vec2 b112 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 56]);

FLOAT_TYPE sum1 = FLOAT_TYPE(0.0);
FLOAT_TYPE sum2 = FLOAT_TYPE(0.0);
[[unroll]] for (int l = 0; l < 2; ++l) {
sum1 = fma(FLOAT_TYPE(b0[l]), sccache1[ix][ 8*v_im] * qs_u32_0[l ],
fma(FLOAT_TYPE(b16[l]), sccache1[ix][1 + 8*v_im] * qs_u32_0[l+2],
fma(FLOAT_TYPE(b32[l]), sccache1[ix][2 + 8*v_im] * qs_u32_2[l ],
fma(FLOAT_TYPE(b48[l]), sccache1[ix][3 + 8*v_im] * qs_u32_2[l+2],
fma(FLOAT_TYPE(b64[l]), sccache1[ix][4 + 8*v_im] * qs_u32_4[l ],
fma(FLOAT_TYPE(b80[l]), sccache1[ix][5 + 8*v_im] * qs_u32_4[l+2],
fma(FLOAT_TYPE(b96[l]), sccache1[ix][6 + 8*v_im] * qs_u32_6[l ],
fma(FLOAT_TYPE(b112[l]), sccache1[ix][7 + 8*v_im] * qs_u32_6[l+2], sum1))))))));
sum2 = fma(FLOAT_TYPE(b0[l]), sccache2[ix][ 8*v_im],
fma(FLOAT_TYPE(b16[l]), sccache2[ix][1 + 8*v_im],
fma(FLOAT_TYPE(b32[l]), sccache2[ix][2 + 8*v_im],
fma(FLOAT_TYPE(b48[l]), sccache2[ix][3 + 8*v_im],
fma(FLOAT_TYPE(b64[l]), sccache2[ix][4 + 8*v_im],
fma(FLOAT_TYPE(b80[l]), sccache2[ix][5 + 8*v_im],
fma(FLOAT_TYPE(b96[l]), sccache2[ix][6 + 8*v_im],
fma(FLOAT_TYPE(b112[l]), sccache2[ix][7 + 8*v_im], sum2))))))));
}
temp[j][n] = fma(dall, sum1, fma(-dmin, sum2, temp[j][n]));
}
}
}

void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
uint a_offset, b_offset, d_offset;
get_offsets(a_offset, b_offset, d_offset);
Expand All @@ -14,88 +87,28 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
// 16 threads are used to process each block
const uint it_size = gl_WorkGroupSize.x/16;
const uint tid = gl_LocalInvocationID.x;
const uint itid = tid%16; // 0...16
const uint ix = tid/16;

const uint step = 8;
const uint itid = tid%16; // 0...15
const uint ix = tid/16;

const uint v_im = itid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
const uint v_in = itid - step*v_im; // 0...15 or 0...7
const uint v_im = itid/8; // 0 or 1. 0 computes 0..., 1 computes 128...
const uint v_in = itid - 8*v_im; // 0...7

const uint l0 = 2*v_in; // 0...15
const uint q_offset = 32*v_im + l0;
const uint s_offset = 8*v_im;
const uint y_offset = 128*v_im + l0;

FLOAT_TYPE temp[NUM_COLS][NUM_ROWS];

[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
[[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) {
temp[j][i] = FLOAT_TYPE(0);
}
}

[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) {
const uint y_idx = i * QUANT_K + y_offset;

[[unroll]] for (uint n = 0; n < num_rows; ++n) {
const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row;
vec2 d = vec2(data_a[ib0 + i].d);
const FLOAT_TYPE dall = FLOAT_TYPE(d.x);
const FLOAT_TYPE dmin = FLOAT_TYPE(d.y);

uint32_t s0_u32 = data_a_packed32[ib0 + i].scales[s_offset / 4 + 0];
uint32_t s4_u32 = data_a_packed32[ib0 + i].scales[s_offset / 4 + 1];

uint32_t s0_lo4_u32 = s0_u32 & 0x0F0F0F0F;
uint32_t s0_hi4_u32 = (s0_u32 >> 4) & 0x0F0F0F0F;
uint32_t s4_lo4_u32 = s4_u32 & 0x0F0F0F0F;
uint32_t s4_hi4_u32 = (s4_u32 >> 4) & 0x0F0F0F0F;

uvec4 s0_lo4 = uvec4(unpack8(s0_lo4_u32));
uvec4 s4_lo4 = uvec4(unpack8(s4_lo4_u32));
uvec4 s0_hi4 = uvec4(unpack8(s0_hi4_u32));
uvec4 s4_hi4 = uvec4(unpack8(s4_hi4_u32));

uint16_t qs0_u16 = data_a_packed16[ib0 + i].qs[q_offset / 2 + 0];
uint16_t qs16_u16 = data_a_packed16[ib0 + i].qs[q_offset / 2 + 8];
uvec2 qs0 = uvec2(unpack8(qs0_u16));
uvec2 qs16 = uvec2(unpack8(qs16_u16));

[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
vec2 b0 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 0]);
vec2 b16 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 8]);
vec2 b32 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 16]);
vec2 b48 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 24]);
vec2 b64 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 32]);
vec2 b80 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 40]);
vec2 b96 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 48]);
vec2 b112 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 56]);

FLOAT_TYPE sum1 = FLOAT_TYPE(0.0);
FLOAT_TYPE sum2 = FLOAT_TYPE(0.0);
[[unroll]] for (int l = 0; l < 2; ++l) {
sum1 = fma(FLOAT_TYPE(b0[l]), FLOAT_TYPE(s0_lo4[0]) * FLOAT_TYPE((qs0[l] >> 0) & 3),
fma(FLOAT_TYPE(b16[l]), FLOAT_TYPE(s0_lo4[1]) * FLOAT_TYPE((qs16[l] >> 0) & 3),
fma(FLOAT_TYPE(b32[l]), FLOAT_TYPE(s0_lo4[2]) * FLOAT_TYPE((qs0[l] >> 2) & 3),
fma(FLOAT_TYPE(b48[l]), FLOAT_TYPE(s0_lo4[3]) * FLOAT_TYPE((qs16[l] >> 2) & 3),
fma(FLOAT_TYPE(b64[l]), FLOAT_TYPE(s4_lo4[0]) * FLOAT_TYPE((qs0[l] >> 4) & 3),
fma(FLOAT_TYPE(b80[l]), FLOAT_TYPE(s4_lo4[1]) * FLOAT_TYPE((qs16[l] >> 4) & 3),
fma(FLOAT_TYPE(b96[l]), FLOAT_TYPE(s4_lo4[2]) * FLOAT_TYPE((qs0[l] >> 6) & 3),
fma(FLOAT_TYPE(b112[l]), FLOAT_TYPE(s4_lo4[3]) * FLOAT_TYPE((qs16[l] >> 6) & 3), sum1))))))));
sum2 = fma(FLOAT_TYPE(b0[l]), FLOAT_TYPE(s0_hi4[0]),
fma(FLOAT_TYPE(b16[l]), FLOAT_TYPE(s0_hi4[1]),
fma(FLOAT_TYPE(b32[l]), FLOAT_TYPE(s0_hi4[2]),
fma(FLOAT_TYPE(b48[l]), FLOAT_TYPE(s0_hi4[3]),
fma(FLOAT_TYPE(b64[l]), FLOAT_TYPE(s4_hi4[0]),
fma(FLOAT_TYPE(b80[l]), FLOAT_TYPE(s4_hi4[1]),
fma(FLOAT_TYPE(b96[l]), FLOAT_TYPE(s4_hi4[2]),
fma(FLOAT_TYPE(b112[l]), FLOAT_TYPE(s4_hi4[3]), sum2))))))));
}
temp[j][n] = fma(dall, sum1, fma(-dmin, sum2, temp[j][n]));
}
}
}
const uint nbr_par_th = num_blocks_per_row%it_size;
const uint nbr_all_th = num_blocks_per_row - nbr_par_th;
uint i0 = 0;
[[unroll]] for (; i0 < nbr_all_th; i0 += it_size)
calc_superblock(a_offset, b_offset, itid, v_im, ix, q_offset, y_offset, i0 + ix, num_blocks_per_row, first_row, num_rows, true);
calc_superblock(a_offset, b_offset, itid, v_im, ix, q_offset, y_offset, i0 + ix, num_blocks_per_row, first_row, num_rows, false);

reduce_result(temp, d_offset, first_row, num_rows, tid);
}
Expand Down
Loading
Loading