-
Notifications
You must be signed in to change notification settings - Fork 10.7k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Converting kfkas Llama-2-ko-7b-Chat to GGUF fails #2865
Comments
I think
The special characters at the GGUF version also look kind of weird. I'm pretty sure your main issue in the |
dear KerfuffleV2 Thank you for your reply. MODEL URL : https://huggingface.co/kfkas/Llama-2-ko-7b-Chat/tree/main FILE LIST |
No need to apologize. I think because it's a Korean model that it uses a different tokenizer type than that script expects. From your link: "Since Llama-2-Ko uses FastTokenizer provided by HF tokenizers NOT sentencepiece package, it is required to use use_fast=True option when initialize tokenizer." I'm not an expert on this, but I think that may mean it uses a BPE tokenizer rather than SPM (which is typical for LLaMA models). I don't know if it will work, but you can try using the main It's possible this model uses a type of tokenizer or configuration that llama.cpp doesn't currently support. |
In
|
I think I need the vocab.json file. However, there is an error because this file is not in this model folder. E:\AI\llama.cpp>python convert.py --vocabtype bpe --outfile a.gguf .\models\kfkas_Llama-2-ko-7b-Chat |
No the conversion script does this wrong, it should use the |
I think this little script will work for extracting the vocab: import json, sys
tokenizer = json.load(sys.stdin)
json.dump(tokenizer['model']['vocab'], sys.stdout) It reads from standard input and writes to standard output so you'll need to do something like:
|
I've made progress with your continuous guidance. And execute the command below to a.I checked that the file called gguf was also created well without errors! --- output ---- --- a.gguf's info --- But When running 'E:\AI\llama.cpp>main -m a.gguf', there is a problem that LLM has to generate arbitrary strings, but it cannot. I think the gguf file is well made, but it's weird. --- output ---- system_info: n_threads = 8 / 16 | AVX = 1 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | SSSE3 = 0 | VSX = 0 |
|
What if you specify a prompt like:
|
I added 'ensure_ascii=False' to json dump due to Korean Unicode display problem. |
run : main -m a.gguf -p "Why is the sky blue?" output :
^C |
If there was going to be output, you'd see it pretty quickly. This is almost certainly an issue with the vocabulary but I'm not knowledgeable enough to really fix it. Just in case it's something to do with the import json
with open("tokenizer.json", "r", encoding="utf-8") as f:
tokenizer = json.load(f)
with open("vocab.json", "w", encoding="utf-8") as f:
json.dump(tokenizer['model']['vocab'], f) I doubt it will make a difference though. If not, hopefully someone else will be able to help you. |
dear KerfuffleV2 I created vocab.json with the modified code, but it is not generating the same string. |
Do you just mean the result is the same: no output? If so, unfortunately that's pretty much what I expected because I didn't expect the second version of the conversion script to really make a difference. I don't think you're doing anything wrong, it just doesn't seem like llama.cpp currently supports that particular model. I'd suggest keeping this issue open but editing it a bit to be something more like "Converting kfkas Llama-2-ko-7b-Chat to GGUF fails" or possibly create a different issue like "Please add support for kfkas llama-2-ko-7b-chat" and link here for context. |
yes. The same string was not generated. As you said, I revised the title of this issue and registered a new issue. Thank you for your advice.^^ |
I could reproduce this on the original Llama 2 with Note that the
I downloaded Llama 2 files in # create vocab.json
$ cat models/Llama-2-7b-chat-hf/tokenizer.json | jq --ascii-output '.model.vocab' > models/Llama-2-7b-chat-hf/vocab.json
$ python convert.py models/Llama-2-7b-chat-hf --vocabtype bpe $ ./main -m models/Llama-2-7b-chat-hf/ggml-model-f16.gguf--verbose-prompt -n 128 -p "$(echo "<s>[INST] How are you? [/INST]")"
(snip)
llm_load_print_meta: format = GGUF V1 (support until nov 2023)
llm_load_print_meta: arch = llama
llm_load_print_meta: vocab type = SPM
llm_load_print_meta: n_vocab = 32000
llm_load_print_meta: n_merges = 0
llm_load_print_meta: n_ctx_train = 4096
llm_load_print_meta: n_ctx = 512
llm_load_print_meta: n_embd = 4096
llm_load_print_meta: n_head = 32
llm_load_print_meta: n_head_kv = 32
llm_load_print_meta: n_layer = 32
llm_load_print_meta: n_rot = 128
llm_load_print_meta: n_gqa = 1
llm_load_print_meta: f_norm_eps = 1.0e-05
llm_load_print_meta: f_norm_rms_eps = 1.0e-06
llm_load_print_meta: n_ff = 11008
llm_load_print_meta: freq_base = 10000.0
llm_load_print_meta: freq_scale = 1
llm_load_print_meta: model type = 7B
llm_load_print_meta: model ftype = mostly F16
llm_load_print_meta: model size = 6.74 B
llm_load_print_meta: general.name = models
llm_load_print_meta: BOS token = 1 '<s>'
llm_load_print_meta: EOS token = 2 '</s>'
llm_load_print_meta: UNK token = 0 '<unk>'
llm_load_print_meta: LF token = 13 '<0x0A>'
llm_load_tensors: ggml ctx size = 0.09 MB
llm_load_tensors: mem required = 12853.10 MB (+ 256.00 MB per state)
...................................................................................................
llama_new_context_with_model: kv self size = 256.00 MB
llama_new_context_with_model: compute buffer total size = 71.91 MB
system_info: n_threads = 8 / 16 | AVX = 1 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 |
main: prompt: '<s>[INST] How are you? [/INST]'
main: number of tokens in prompt = 18
1 -> ''
529 -> ''
29879 -> ''
24566 -> ''
29902 -> ''
3059 -> ''
29911 -> ''
29962 -> ''
1128 -> ''
526 -> ''
366 -> ''
29973 -> ''
518 -> ''
29914 -> ''
29902 -> ''
3059 -> ''
29911 -> ''
29962 -> ''
sampling: repeat_last_n = 64, repeat_penalty = 1.100000, presence_penalty = 0.000000, frequency_penalty = 0.000000, top_k = 40, tfs_z = 1.000000, top_p = 0.950000, typical_p = 1.000000, temp = 0.800000, mirostat = 0, mirostat_lr = 0.100000, mirostat_ent = 5.000000
generate: n_ctx = 512, n_batch = 512, n_predict = 128, n_keep = 0
[end of text] I wonder if (Of course, I can do with |
No the conversion script should set the tokenizer model kv properly to |
Ahh, it seems like |
@kurugai If you want to try what klosax suggested, find the line self.gguf.add_tokenizer_model("llama") In if isinstance(vocab, SentencePieceVocab):
self.gguf.add_tokenizer_model("llama")
elif isinstance(vocab, BpeVocab):
self.gguf.add_tokenizer_model("gpt2")
else:
raise ValueError(f'Unknown vocab type: Not BpeVocab or SentencePieceVocab') |
This line: Line 841 in 53885d7
|
@KerfuffleV2 #self.gguf.add_tokenizer_model("llama")
if isinstance(vocab, SentencePieceVocab):
self.gguf.add_tokenizer_model("llama")
elif isinstance(vocab, BpeVocab):
self.gguf.add_tokenizer_model("gpt2")
else:
raise ValueError(f'Unknown vocab type: Not BpeVocab or SentencePieceVocab') And I made 'a.gguf' using the command below.
However, when executing the main command, the following error message was displayed during the model loading process.
|
Ahh, I forgot the version in Unless you're really impatient, your best bet is probably to just wait until that pull gets merged. That will hopefully fix this issue. edit: Just want to add that I'd be really happy for people to test those changes. So if you do want to try it but need to ask some questions first, that's no problem. Don't be afraid of bothering me, it's up to whether you feel like going through the trouble or not. |
Thank you for your feedback. First of all, I'm not used to pull tests. I'll wait until it merges. The day of the merger!! I'll check right away. Thank you for letting me know your sincerity. |
I ran
Do you have any idea to solve this? |
You need to install the You might need to reactivate the environment also. |
Thank you. I've totally forgotten about pip stuff. I ran this in addition to #2865 (comment) (although without
And then:
Any idea? 😭 |
You're just trying this with a normal LLaMA2 model not the one OP was testing, right? The only thing I can think of is it's because you're using a model that wasn't intended to use the BPE tokenizer mode. I'm not an expert on the tokenizer stuff so that idea might not be worth too much. I'm going to download OP's exact model and try it, if I get the same result as you then we'll know it's not because of what I mentioned. edit: Your issue looks like #2889 so maybe it's just an issue with the BPE tokenizer and nothing you did. You could try loading the model you generated with #2842 using edit: So, I got OP's Korean model converted (it did require generating |
Thank you for your reply. |
Unfortunately, even with the change I suggested in the comments there it's still not really going to be correct. You'll see stuff like |
Version info
CommentHi. I think it's merged, so I installed a new package of llama.cpp and gguf and made 'a.gguf' in the same way as yesterday. Is it correct that the merger has been completed?
Below is the full log of the main command.
|
Yes, it got merged today. Unfortunately, that wasn't enough to fix models using BPE (like this one). Look a little bit higher in the thread, I linked to a pull with a fix for the "byte not found thing". However, even with that change the content of all the tokens is still blank. There's a partial fix in the comments, but there are still problems. The good news it seems like people are aware of at least some of the problems and they're being looked at/worked on. |
Good news! I will try whenever there is a related source modification in the future. :) |
@KerfuffleV2 |
Hi. I'm trying to convert the 'kfkas/Llama-2-ko-7b-Chat' model I received from huggingface on Windows 11 into a gguf file.
So I tried to convert it to the command below.
C:\AI\llama.cpp>python convert-llama-hf-to-gguf.py .\models\kfkas_Llama-2-ko-7b-Chat 1
The conversion was successful, but when I tried to execute it, there was a problem that it couldn't be executed.
Can I ask you to review what should I do? Below are the results of the command execution.
I know you're busy, but please do it once.
C:\AI\llama.cpp>pip install gguf
Defaulting to user installation because normal site-packages is not writeable
Collecting gguf
Obtaining dependency information for gguf from https://files.pythonhosted.org/packages/bb/16/83a1cb95d9ec85bc316a1986481325c257a4a9a024e12bace801898db14e/gguf-0.2.1-py3-none-any.whl.metadata
Downloading gguf-0.2.1-py3-none-any.whl.metadata (1.9 kB)
Requirement already satisfied: numpy>=1.17 in c:\users\hwyoo\appdata\roaming\python\python310\site-packages (from gguf) (1.23.5)
Downloading gguf-0.2.1-py3-none-any.whl (8.1 kB)
Installing collected packages: gguf
Successfully installed gguf-0.2.1
C:\AI\llama.cpp>python convert-llama-hf-to-gguf.py .\models\kfkas_Llama-2-ko-7b-Chat 1
gguf: loading model kfkas_Llama-2-ko-7b-Chat
gguf: found 2 model parts
gguf: get model metadata
gguf: get tokenizer metadata
gguf: get special token ids
gguf: get tensor metadata
gguf: loading model part 'pytorch_model-00001-of-00002.bin'
token_embd.weight, n_dims = 2, torch.float16 --> float16
blk.0.attn_q.weight, n_dims = 2, torch.float16 --> float16
blk.0.attn_k.weight, n_dims = 2, torch.float16 --> float16
blk.0.attn_v.weight, n_dims = 2, torch.float16 --> float16
blk.0.attn_output.weight, n_dims = 2, torch.float16 --> float16
blk.0.ffn_gate.weight, n_dims = 2, torch.float16 --> float16
blk.0.ffn_down.weight, n_dims = 2, torch.float16 --> float16
blk.0.ffn_up.weight, n_dims = 2, torch.float16 --> float16
blk.0.attn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.0.ffn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.1.attn_q.weight, n_dims = 2, torch.float16 --> float16
blk.1.attn_k.weight, n_dims = 2, torch.float16 --> float16
blk.1.attn_v.weight, n_dims = 2, torch.float16 --> float16
blk.1.attn_output.weight, n_dims = 2, torch.float16 --> float16
blk.1.ffn_gate.weight, n_dims = 2, torch.float16 --> float16
blk.1.ffn_down.weight, n_dims = 2, torch.float16 --> float16
blk.1.ffn_up.weight, n_dims = 2, torch.float16 --> float16
blk.1.attn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.1.ffn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.2.attn_q.weight, n_dims = 2, torch.float16 --> float16
blk.2.attn_k.weight, n_dims = 2, torch.float16 --> float16
blk.2.attn_v.weight, n_dims = 2, torch.float16 --> float16
blk.2.attn_output.weight, n_dims = 2, torch.float16 --> float16
blk.2.ffn_gate.weight, n_dims = 2, torch.float16 --> float16
blk.2.ffn_down.weight, n_dims = 2, torch.float16 --> float16
blk.2.ffn_up.weight, n_dims = 2, torch.float16 --> float16
blk.2.attn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.2.ffn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.3.attn_q.weight, n_dims = 2, torch.float16 --> float16
blk.3.attn_k.weight, n_dims = 2, torch.float16 --> float16
blk.3.attn_v.weight, n_dims = 2, torch.float16 --> float16
blk.3.attn_output.weight, n_dims = 2, torch.float16 --> float16
blk.3.ffn_gate.weight, n_dims = 2, torch.float16 --> float16
blk.3.ffn_down.weight, n_dims = 2, torch.float16 --> float16
blk.3.ffn_up.weight, n_dims = 2, torch.float16 --> float16
blk.3.attn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.3.ffn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.4.attn_q.weight, n_dims = 2, torch.float16 --> float16
blk.4.attn_k.weight, n_dims = 2, torch.float16 --> float16
blk.4.attn_v.weight, n_dims = 2, torch.float16 --> float16
blk.4.attn_output.weight, n_dims = 2, torch.float16 --> float16
blk.4.ffn_gate.weight, n_dims = 2, torch.float16 --> float16
blk.4.ffn_down.weight, n_dims = 2, torch.float16 --> float16
blk.4.ffn_up.weight, n_dims = 2, torch.float16 --> float16
blk.4.attn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.4.ffn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.5.attn_q.weight, n_dims = 2, torch.float16 --> float16
blk.5.attn_k.weight, n_dims = 2, torch.float16 --> float16
blk.5.attn_v.weight, n_dims = 2, torch.float16 --> float16
blk.5.attn_output.weight, n_dims = 2, torch.float16 --> float16
blk.5.ffn_gate.weight, n_dims = 2, torch.float16 --> float16
blk.5.ffn_down.weight, n_dims = 2, torch.float16 --> float16
blk.5.ffn_up.weight, n_dims = 2, torch.float16 --> float16
blk.5.attn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.5.ffn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.6.attn_q.weight, n_dims = 2, torch.float16 --> float16
blk.6.attn_k.weight, n_dims = 2, torch.float16 --> float16
blk.6.attn_v.weight, n_dims = 2, torch.float16 --> float16
blk.6.attn_output.weight, n_dims = 2, torch.float16 --> float16
blk.6.ffn_gate.weight, n_dims = 2, torch.float16 --> float16
blk.6.ffn_down.weight, n_dims = 2, torch.float16 --> float16
blk.6.ffn_up.weight, n_dims = 2, torch.float16 --> float16
blk.6.attn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.6.ffn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.7.attn_q.weight, n_dims = 2, torch.float16 --> float16
blk.7.attn_k.weight, n_dims = 2, torch.float16 --> float16
blk.7.attn_v.weight, n_dims = 2, torch.float16 --> float16
blk.7.attn_output.weight, n_dims = 2, torch.float16 --> float16
blk.7.ffn_gate.weight, n_dims = 2, torch.float16 --> float16
blk.7.ffn_down.weight, n_dims = 2, torch.float16 --> float16
blk.7.ffn_up.weight, n_dims = 2, torch.float16 --> float16
blk.7.attn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.7.ffn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.8.attn_q.weight, n_dims = 2, torch.float16 --> float16
blk.8.attn_k.weight, n_dims = 2, torch.float16 --> float16
blk.8.attn_v.weight, n_dims = 2, torch.float16 --> float16
blk.8.attn_output.weight, n_dims = 2, torch.float16 --> float16
blk.8.ffn_gate.weight, n_dims = 2, torch.float16 --> float16
blk.8.ffn_down.weight, n_dims = 2, torch.float16 --> float16
blk.8.ffn_up.weight, n_dims = 2, torch.float16 --> float16
blk.8.attn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.8.ffn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.9.attn_q.weight, n_dims = 2, torch.float16 --> float16
blk.9.attn_k.weight, n_dims = 2, torch.float16 --> float16
blk.9.attn_v.weight, n_dims = 2, torch.float16 --> float16
blk.9.attn_output.weight, n_dims = 2, torch.float16 --> float16
blk.9.ffn_gate.weight, n_dims = 2, torch.float16 --> float16
blk.9.ffn_down.weight, n_dims = 2, torch.float16 --> float16
blk.9.ffn_up.weight, n_dims = 2, torch.float16 --> float16
blk.9.attn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.9.ffn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.10.attn_q.weight, n_dims = 2, torch.float16 --> float16
blk.10.attn_k.weight, n_dims = 2, torch.float16 --> float16
blk.10.attn_v.weight, n_dims = 2, torch.float16 --> float16
blk.10.attn_output.weight, n_dims = 2, torch.float16 --> float16
blk.10.ffn_gate.weight, n_dims = 2, torch.float16 --> float16
blk.10.ffn_down.weight, n_dims = 2, torch.float16 --> float16
blk.10.ffn_up.weight, n_dims = 2, torch.float16 --> float16
blk.10.attn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.10.ffn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.11.attn_q.weight, n_dims = 2, torch.float16 --> float16
blk.11.attn_k.weight, n_dims = 2, torch.float16 --> float16
blk.11.attn_v.weight, n_dims = 2, torch.float16 --> float16
blk.11.attn_output.weight, n_dims = 2, torch.float16 --> float16
blk.11.ffn_gate.weight, n_dims = 2, torch.float16 --> float16
blk.11.ffn_down.weight, n_dims = 2, torch.float16 --> float16
blk.11.ffn_up.weight, n_dims = 2, torch.float16 --> float16
blk.11.attn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.11.ffn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.12.attn_q.weight, n_dims = 2, torch.float16 --> float16
blk.12.attn_k.weight, n_dims = 2, torch.float16 --> float16
blk.12.attn_v.weight, n_dims = 2, torch.float16 --> float16
blk.12.attn_output.weight, n_dims = 2, torch.float16 --> float16
blk.12.ffn_gate.weight, n_dims = 2, torch.float16 --> float16
blk.12.ffn_down.weight, n_dims = 2, torch.float16 --> float16
blk.12.ffn_up.weight, n_dims = 2, torch.float16 --> float16
blk.12.attn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.12.ffn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.13.attn_q.weight, n_dims = 2, torch.float16 --> float16
blk.13.attn_k.weight, n_dims = 2, torch.float16 --> float16
blk.13.attn_v.weight, n_dims = 2, torch.float16 --> float16
blk.13.attn_output.weight, n_dims = 2, torch.float16 --> float16
blk.13.ffn_gate.weight, n_dims = 2, torch.float16 --> float16
blk.13.ffn_down.weight, n_dims = 2, torch.float16 --> float16
blk.13.ffn_up.weight, n_dims = 2, torch.float16 --> float16
blk.13.attn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.13.ffn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.14.attn_q.weight, n_dims = 2, torch.float16 --> float16
blk.14.attn_k.weight, n_dims = 2, torch.float16 --> float16
blk.14.attn_v.weight, n_dims = 2, torch.float16 --> float16
blk.14.attn_output.weight, n_dims = 2, torch.float16 --> float16
blk.14.ffn_gate.weight, n_dims = 2, torch.float16 --> float16
blk.14.ffn_down.weight, n_dims = 2, torch.float16 --> float16
blk.14.ffn_up.weight, n_dims = 2, torch.float16 --> float16
blk.14.attn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.14.ffn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.15.attn_q.weight, n_dims = 2, torch.float16 --> float16
blk.15.attn_k.weight, n_dims = 2, torch.float16 --> float16
blk.15.attn_v.weight, n_dims = 2, torch.float16 --> float16
blk.15.attn_output.weight, n_dims = 2, torch.float16 --> float16
blk.15.ffn_gate.weight, n_dims = 2, torch.float16 --> float16
blk.15.ffn_down.weight, n_dims = 2, torch.float16 --> float16
blk.15.ffn_up.weight, n_dims = 2, torch.float16 --> float16
blk.15.attn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.15.ffn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.16.attn_q.weight, n_dims = 2, torch.float16 --> float16
blk.16.attn_k.weight, n_dims = 2, torch.float16 --> float16
blk.16.attn_v.weight, n_dims = 2, torch.float16 --> float16
blk.16.attn_output.weight, n_dims = 2, torch.float16 --> float16
blk.16.ffn_gate.weight, n_dims = 2, torch.float16 --> float16
blk.16.ffn_down.weight, n_dims = 2, torch.float16 --> float16
blk.16.ffn_up.weight, n_dims = 2, torch.float16 --> float16
blk.16.attn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.16.ffn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.17.attn_q.weight, n_dims = 2, torch.float16 --> float16
blk.17.attn_k.weight, n_dims = 2, torch.float16 --> float16
blk.17.attn_v.weight, n_dims = 2, torch.float16 --> float16
blk.17.attn_output.weight, n_dims = 2, torch.float16 --> float16
blk.17.ffn_gate.weight, n_dims = 2, torch.float16 --> float16
blk.17.ffn_down.weight, n_dims = 2, torch.float16 --> float16
blk.17.ffn_up.weight, n_dims = 2, torch.float16 --> float16
blk.17.attn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.17.ffn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.18.attn_q.weight, n_dims = 2, torch.float16 --> float16
blk.18.attn_k.weight, n_dims = 2, torch.float16 --> float16
blk.18.attn_v.weight, n_dims = 2, torch.float16 --> float16
blk.18.attn_output.weight, n_dims = 2, torch.float16 --> float16
blk.18.ffn_gate.weight, n_dims = 2, torch.float16 --> float16
blk.18.ffn_down.weight, n_dims = 2, torch.float16 --> float16
blk.18.ffn_up.weight, n_dims = 2, torch.float16 --> float16
blk.18.attn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.18.ffn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.19.attn_q.weight, n_dims = 2, torch.float16 --> float16
blk.19.attn_k.weight, n_dims = 2, torch.float16 --> float16
blk.19.attn_v.weight, n_dims = 2, torch.float16 --> float16
blk.19.attn_output.weight, n_dims = 2, torch.float16 --> float16
blk.19.ffn_gate.weight, n_dims = 2, torch.float16 --> float16
blk.19.ffn_down.weight, n_dims = 2, torch.float16 --> float16
blk.19.ffn_up.weight, n_dims = 2, torch.float16 --> float16
blk.19.attn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.19.ffn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.20.attn_q.weight, n_dims = 2, torch.float16 --> float16
blk.20.attn_k.weight, n_dims = 2, torch.float16 --> float16
blk.20.attn_v.weight, n_dims = 2, torch.float16 --> float16
blk.20.attn_output.weight, n_dims = 2, torch.float16 --> float16
blk.20.ffn_gate.weight, n_dims = 2, torch.float16 --> float16
blk.20.ffn_down.weight, n_dims = 2, torch.float16 --> float16
blk.20.ffn_up.weight, n_dims = 2, torch.float16 --> float16
blk.20.attn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.20.ffn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.21.attn_q.weight, n_dims = 2, torch.float16 --> float16
blk.21.attn_k.weight, n_dims = 2, torch.float16 --> float16
blk.21.attn_v.weight, n_dims = 2, torch.float16 --> float16
blk.21.attn_output.weight, n_dims = 2, torch.float16 --> float16
blk.21.ffn_gate.weight, n_dims = 2, torch.float16 --> float16
blk.21.ffn_down.weight, n_dims = 2, torch.float16 --> float16
blk.21.ffn_up.weight, n_dims = 2, torch.float16 --> float16
blk.21.attn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.21.ffn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.22.attn_q.weight, n_dims = 2, torch.float16 --> float16
blk.22.attn_k.weight, n_dims = 2, torch.float16 --> float16
blk.22.attn_v.weight, n_dims = 2, torch.float16 --> float16
blk.22.attn_output.weight, n_dims = 2, torch.float16 --> float16
blk.22.ffn_gate.weight, n_dims = 2, torch.float16 --> float16
blk.22.ffn_down.weight, n_dims = 2, torch.float16 --> float16
blk.22.ffn_up.weight, n_dims = 2, torch.float16 --> float16
blk.22.attn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.22.ffn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.23.attn_q.weight, n_dims = 2, torch.float16 --> float16
blk.23.attn_k.weight, n_dims = 2, torch.float16 --> float16
blk.23.attn_v.weight, n_dims = 2, torch.float16 --> float16
blk.23.attn_output.weight, n_dims = 2, torch.float16 --> float16
blk.23.ffn_gate.weight, n_dims = 2, torch.float16 --> float16
gguf: loading model part 'pytorch_model-00002-of-00002.bin'
blk.23.ffn_down.weight, n_dims = 2, torch.float16 --> float16
blk.23.ffn_up.weight, n_dims = 2, torch.float16 --> float16
blk.23.attn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.23.ffn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.24.attn_q.weight, n_dims = 2, torch.float16 --> float16
blk.24.attn_k.weight, n_dims = 2, torch.float16 --> float16
blk.24.attn_v.weight, n_dims = 2, torch.float16 --> float16
blk.24.attn_output.weight, n_dims = 2, torch.float16 --> float16
blk.24.ffn_gate.weight, n_dims = 2, torch.float16 --> float16
blk.24.ffn_down.weight, n_dims = 2, torch.float16 --> float16
blk.24.ffn_up.weight, n_dims = 2, torch.float16 --> float16
blk.24.attn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.24.ffn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.25.attn_q.weight, n_dims = 2, torch.float16 --> float16
blk.25.attn_k.weight, n_dims = 2, torch.float16 --> float16
blk.25.attn_v.weight, n_dims = 2, torch.float16 --> float16
blk.25.attn_output.weight, n_dims = 2, torch.float16 --> float16
blk.25.ffn_gate.weight, n_dims = 2, torch.float16 --> float16
blk.25.ffn_down.weight, n_dims = 2, torch.float16 --> float16
blk.25.ffn_up.weight, n_dims = 2, torch.float16 --> float16
blk.25.attn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.25.ffn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.26.attn_q.weight, n_dims = 2, torch.float16 --> float16
blk.26.attn_k.weight, n_dims = 2, torch.float16 --> float16
blk.26.attn_v.weight, n_dims = 2, torch.float16 --> float16
blk.26.attn_output.weight, n_dims = 2, torch.float16 --> float16
blk.26.ffn_gate.weight, n_dims = 2, torch.float16 --> float16
blk.26.ffn_down.weight, n_dims = 2, torch.float16 --> float16
blk.26.ffn_up.weight, n_dims = 2, torch.float16 --> float16
blk.26.attn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.26.ffn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.27.attn_q.weight, n_dims = 2, torch.float16 --> float16
blk.27.attn_k.weight, n_dims = 2, torch.float16 --> float16
blk.27.attn_v.weight, n_dims = 2, torch.float16 --> float16
blk.27.attn_output.weight, n_dims = 2, torch.float16 --> float16
blk.27.ffn_gate.weight, n_dims = 2, torch.float16 --> float16
blk.27.ffn_down.weight, n_dims = 2, torch.float16 --> float16
blk.27.ffn_up.weight, n_dims = 2, torch.float16 --> float16
blk.27.attn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.27.ffn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.28.attn_q.weight, n_dims = 2, torch.float16 --> float16
blk.28.attn_k.weight, n_dims = 2, torch.float16 --> float16
blk.28.attn_v.weight, n_dims = 2, torch.float16 --> float16
blk.28.attn_output.weight, n_dims = 2, torch.float16 --> float16
blk.28.ffn_gate.weight, n_dims = 2, torch.float16 --> float16
blk.28.ffn_down.weight, n_dims = 2, torch.float16 --> float16
blk.28.ffn_up.weight, n_dims = 2, torch.float16 --> float16
blk.28.attn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.28.ffn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.29.attn_q.weight, n_dims = 2, torch.float16 --> float16
blk.29.attn_k.weight, n_dims = 2, torch.float16 --> float16
blk.29.attn_v.weight, n_dims = 2, torch.float16 --> float16
blk.29.attn_output.weight, n_dims = 2, torch.float16 --> float16
blk.29.ffn_gate.weight, n_dims = 2, torch.float16 --> float16
blk.29.ffn_down.weight, n_dims = 2, torch.float16 --> float16
blk.29.ffn_up.weight, n_dims = 2, torch.float16 --> float16
blk.29.attn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.29.ffn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.30.attn_q.weight, n_dims = 2, torch.float16 --> float16
blk.30.attn_k.weight, n_dims = 2, torch.float16 --> float16
blk.30.attn_v.weight, n_dims = 2, torch.float16 --> float16
blk.30.attn_output.weight, n_dims = 2, torch.float16 --> float16
blk.30.ffn_gate.weight, n_dims = 2, torch.float16 --> float16
blk.30.ffn_down.weight, n_dims = 2, torch.float16 --> float16
blk.30.ffn_up.weight, n_dims = 2, torch.float16 --> float16
blk.30.attn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.30.ffn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.31.attn_q.weight, n_dims = 2, torch.float16 --> float16
blk.31.attn_k.weight, n_dims = 2, torch.float16 --> float16
blk.31.attn_v.weight, n_dims = 2, torch.float16 --> float16
blk.31.attn_output.weight, n_dims = 2, torch.float16 --> float16
blk.31.ffn_gate.weight, n_dims = 2, torch.float16 --> float16
blk.31.ffn_down.weight, n_dims = 2, torch.float16 --> float16
blk.31.ffn_up.weight, n_dims = 2, torch.float16 --> float16
blk.31.attn_norm.weight, n_dims = 1, torch.float16 --> float32
blk.31.ffn_norm.weight, n_dims = 1, torch.float16 --> float32
output_norm.weight, n_dims = 1, torch.float16 --> float32
output.weight, n_dims = 2, torch.float16 --> float16
gguf: write header
gguf: write metadata
gguf: write tensors
gguf: model successfully exported to '.\models\kfkas_Llama-2-ko-7b-Chat/ggml-model-f16.gguf'
C:\AI\llama.cpp>main
main: build = 1100 (dd0dc36)
main: seed = 1693289567
llama_model_loader: loaded meta data with 15 key-value pairs and 291 tensors from models/7B/ggml-model-f16.gguf (version GGUF V1L����.llama_model_loader: - tensor 0: token_embd.weight f16 [ 4096, 46336, 1, 1 ]
llama_model_loader: - tensor 1: blk.0.attn_q.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 2: blk.0.attn_k.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 3: blk.0.attn_v.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 4: blk.0.attn_output.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 5: blk.0.ffn_gate.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 6: blk.0.ffn_down.weight f16 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 7: blk.0.ffn_up.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 8: blk.0.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 9: blk.0.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 10: blk.1.attn_q.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 11: blk.1.attn_k.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 12: blk.1.attn_v.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 13: blk.1.attn_output.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 14: blk.1.ffn_gate.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 15: blk.1.ffn_down.weight f16 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 16: blk.1.ffn_up.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 17: blk.1.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 18: blk.1.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 19: blk.2.attn_q.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 20: blk.2.attn_k.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 21: blk.2.attn_v.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 22: blk.2.attn_output.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 23: blk.2.ffn_gate.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 24: blk.2.ffn_down.weight f16 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 25: blk.2.ffn_up.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 26: blk.2.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 27: blk.2.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 28: blk.3.attn_q.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 29: blk.3.attn_k.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 30: blk.3.attn_v.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 31: blk.3.attn_output.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 32: blk.3.ffn_gate.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 33: blk.3.ffn_down.weight f16 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 34: blk.3.ffn_up.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 35: blk.3.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 36: blk.3.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 37: blk.4.attn_q.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 38: blk.4.attn_k.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 39: blk.4.attn_v.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 40: blk.4.attn_output.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 41: blk.4.ffn_gate.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 42: blk.4.ffn_down.weight f16 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 43: blk.4.ffn_up.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 44: blk.4.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 45: blk.4.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 46: blk.5.attn_q.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 47: blk.5.attn_k.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 48: blk.5.attn_v.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 49: blk.5.attn_output.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 50: blk.5.ffn_gate.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 51: blk.5.ffn_down.weight f16 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 52: blk.5.ffn_up.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 53: blk.5.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 54: blk.5.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 55: blk.6.attn_q.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 56: blk.6.attn_k.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 57: blk.6.attn_v.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 58: blk.6.attn_output.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 59: blk.6.ffn_gate.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 60: blk.6.ffn_down.weight f16 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 61: blk.6.ffn_up.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 62: blk.6.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 63: blk.6.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 64: blk.7.attn_q.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 65: blk.7.attn_k.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 66: blk.7.attn_v.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 67: blk.7.attn_output.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 68: blk.7.ffn_gate.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 69: blk.7.ffn_down.weight f16 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 70: blk.7.ffn_up.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 71: blk.7.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 72: blk.7.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 73: blk.8.attn_q.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 74: blk.8.attn_k.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 75: blk.8.attn_v.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 76: blk.8.attn_output.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 77: blk.8.ffn_gate.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 78: blk.8.ffn_down.weight f16 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 79: blk.8.ffn_up.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 80: blk.8.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 81: blk.8.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 82: blk.9.attn_q.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 83: blk.9.attn_k.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 84: blk.9.attn_v.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 85: blk.9.attn_output.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 86: blk.9.ffn_gate.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 87: blk.9.ffn_down.weight f16 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 88: blk.9.ffn_up.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 89: blk.9.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 90: blk.9.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 91: blk.10.attn_q.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 92: blk.10.attn_k.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 93: blk.10.attn_v.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 94: blk.10.attn_output.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 95: blk.10.ffn_gate.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 96: blk.10.ffn_down.weight f16 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 97: blk.10.ffn_up.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 98: blk.10.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 99: blk.10.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 100: blk.11.attn_q.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 101: blk.11.attn_k.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 102: blk.11.attn_v.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 103: blk.11.attn_output.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 104: blk.11.ffn_gate.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 105: blk.11.ffn_down.weight f16 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 106: blk.11.ffn_up.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 107: blk.11.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 108: blk.11.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 109: blk.12.attn_q.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 110: blk.12.attn_k.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 111: blk.12.attn_v.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 112: blk.12.attn_output.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 113: blk.12.ffn_gate.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 114: blk.12.ffn_down.weight f16 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 115: blk.12.ffn_up.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 116: blk.12.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 117: blk.12.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 118: blk.13.attn_q.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 119: blk.13.attn_k.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 120: blk.13.attn_v.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 121: blk.13.attn_output.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 122: blk.13.ffn_gate.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 123: blk.13.ffn_down.weight f16 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 124: blk.13.ffn_up.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 125: blk.13.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 126: blk.13.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 127: blk.14.attn_q.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 128: blk.14.attn_k.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 129: blk.14.attn_v.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 130: blk.14.attn_output.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 131: blk.14.ffn_gate.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 132: blk.14.ffn_down.weight f16 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 133: blk.14.ffn_up.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 134: blk.14.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 135: blk.14.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 136: blk.15.attn_q.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 137: blk.15.attn_k.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 138: blk.15.attn_v.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 139: blk.15.attn_output.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 140: blk.15.ffn_gate.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 141: blk.15.ffn_down.weight f16 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 142: blk.15.ffn_up.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 143: blk.15.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 144: blk.15.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 145: blk.16.attn_q.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 146: blk.16.attn_k.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 147: blk.16.attn_v.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 148: blk.16.attn_output.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 149: blk.16.ffn_gate.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 150: blk.16.ffn_down.weight f16 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 151: blk.16.ffn_up.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 152: blk.16.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 153: blk.16.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 154: blk.17.attn_q.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 155: blk.17.attn_k.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 156: blk.17.attn_v.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 157: blk.17.attn_output.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 158: blk.17.ffn_gate.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 159: blk.17.ffn_down.weight f16 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 160: blk.17.ffn_up.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 161: blk.17.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 162: blk.17.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 163: blk.18.attn_q.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 164: blk.18.attn_k.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 165: blk.18.attn_v.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 166: blk.18.attn_output.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 167: blk.18.ffn_gate.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 168: blk.18.ffn_down.weight f16 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 169: blk.18.ffn_up.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 170: blk.18.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 171: blk.18.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 172: blk.19.attn_q.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 173: blk.19.attn_k.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 174: blk.19.attn_v.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 175: blk.19.attn_output.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 176: blk.19.ffn_gate.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 177: blk.19.ffn_down.weight f16 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 178: blk.19.ffn_up.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 179: blk.19.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 180: blk.19.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 181: blk.20.attn_q.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 182: blk.20.attn_k.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 183: blk.20.attn_v.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 184: blk.20.attn_output.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 185: blk.20.ffn_gate.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 186: blk.20.ffn_down.weight f16 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 187: blk.20.ffn_up.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 188: blk.20.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 189: blk.20.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 190: blk.21.attn_q.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 191: blk.21.attn_k.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 192: blk.21.attn_v.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 193: blk.21.attn_output.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 194: blk.21.ffn_gate.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 195: blk.21.ffn_down.weight f16 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 196: blk.21.ffn_up.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 197: blk.21.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 198: blk.21.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 199: blk.22.attn_q.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 200: blk.22.attn_k.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 201: blk.22.attn_v.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 202: blk.22.attn_output.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 203: blk.22.ffn_gate.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 204: blk.22.ffn_down.weight f16 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 205: blk.22.ffn_up.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 206: blk.22.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 207: blk.22.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 208: blk.23.attn_q.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 209: blk.23.attn_k.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 210: blk.23.attn_v.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 211: blk.23.attn_output.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 212: blk.23.ffn_gate.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 213: blk.23.ffn_down.weight f16 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 214: blk.23.ffn_up.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 215: blk.23.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 216: blk.23.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 217: blk.24.attn_q.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 218: blk.24.attn_k.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 219: blk.24.attn_v.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 220: blk.24.attn_output.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 221: blk.24.ffn_gate.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 222: blk.24.ffn_down.weight f16 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 223: blk.24.ffn_up.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 224: blk.24.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 225: blk.24.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 226: blk.25.attn_q.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 227: blk.25.attn_k.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 228: blk.25.attn_v.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 229: blk.25.attn_output.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 230: blk.25.ffn_gate.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 231: blk.25.ffn_down.weight f16 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 232: blk.25.ffn_up.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 233: blk.25.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 234: blk.25.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 235: blk.26.attn_q.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 236: blk.26.attn_k.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 237: blk.26.attn_v.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 238: blk.26.attn_output.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 239: blk.26.ffn_gate.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 240: blk.26.ffn_down.weight f16 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 241: blk.26.ffn_up.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 242: blk.26.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 243: blk.26.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 244: blk.27.attn_q.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 245: blk.27.attn_k.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 246: blk.27.attn_v.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 247: blk.27.attn_output.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 248: blk.27.ffn_gate.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 249: blk.27.ffn_down.weight f16 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 250: blk.27.ffn_up.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 251: blk.27.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 252: blk.27.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 253: blk.28.attn_q.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 254: blk.28.attn_k.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 255: blk.28.attn_v.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 256: blk.28.attn_output.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 257: blk.28.ffn_gate.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 258: blk.28.ffn_down.weight f16 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 259: blk.28.ffn_up.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 260: blk.28.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 261: blk.28.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 262: blk.29.attn_q.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 263: blk.29.attn_k.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 264: blk.29.attn_v.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 265: blk.29.attn_output.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 266: blk.29.ffn_gate.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 267: blk.29.ffn_down.weight f16 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 268: blk.29.ffn_up.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 269: blk.29.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 270: blk.29.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 271: blk.30.attn_q.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 272: blk.30.attn_k.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 273: blk.30.attn_v.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 274: blk.30.attn_output.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 275: blk.30.ffn_gate.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 276: blk.30.ffn_down.weight f16 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 277: blk.30.ffn_up.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 278: blk.30.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 279: blk.30.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 280: blk.31.attn_q.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 281: blk.31.attn_k.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 282: blk.31.attn_v.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 283: blk.31.attn_output.weight f16 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 284: blk.31.ffn_gate.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 285: blk.31.ffn_down.weight f16 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 286: blk.31.ffn_up.weight f16 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 287: blk.31.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 288: blk.31.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 289: output_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 290: output.weight f16 [ 4096, 46336, 1, 1 ]
llama_model_loader: - kv 0: general.architecture str
llama_model_loader: - kv 1: general.name str
llama_model_loader: - kv 2: general.source.hugginface.repository str
llama_model_loader: - kv 3: llama.tensor_data_layout str
llama_model_loader: - kv 4: llama.context_length u32
llama_model_loader: - kv 5: llama.embedding_length u32
llama_model_loader: - kv 6: llama.block_count u32
llama_model_loader: - kv 7: llama.feed_forward_length u32
llama_model_loader: - kv 8: llama.rope.dimension_count u32
llama_model_loader: - kv 9: llama.attention.head_count u32
llama_model_loader: - kv 10: llama.attention.head_count_kv u32
llama_model_loader: - kv 11: llama.attention.layer_norm_rms_epsilon f32
llama_model_loader: - kv 12: tokenizer.ggml.bos_token_id u32
llama_model_loader: - kv 13: tokenizer.ggml.eos_token_id u32
llama_model_loader: - kv 14: tokenizer.ggml.unknown_token_id u32
llama_model_loader: - type f32: 65 tensors
llama_model_loader: - type f16: 226 tensors
error loading model: key not found in model: tokenizer.ggml.tokens
llama_load_model_from_file: failed to load model
llama_init_from_gpt_params: error: failed to load model 'models/7B/ggml-model-f16.gguf'
main: error: unable to load model
The text was updated successfully, but these errors were encountered: