Skip to content

Commit

Permalink
ggml: implement quantized KV cache for FA (#7372)
Browse files Browse the repository at this point in the history
  • Loading branch information
JohannesGaessler authored May 19, 2024
1 parent 1b01f06 commit 5ca49cb
Showing 1 changed file with 71 additions and 42 deletions.
113 changes: 71 additions & 42 deletions ggml.c
Original file line number Diff line number Diff line change
Expand Up @@ -15882,9 +15882,10 @@ static void ggml_compute_forward_flash_attn_ext_f16(
GGML_ASSERT(ne0 == D);
GGML_ASSERT(ne2 == N);

GGML_ASSERT(nbq0 == sizeof(float));
GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
// input tensor rows must be contiguous
GGML_ASSERT(nbq0 == ggml_type_size(q->type));
GGML_ASSERT(nbk0 == ggml_type_size(k->type));
GGML_ASSERT(nbv0 == ggml_type_size(v->type));

GGML_ASSERT(neq0 == D);
GGML_ASSERT(nek0 == D);
Expand Down Expand Up @@ -15938,24 +15939,34 @@ static void ggml_compute_forward_flash_attn_ext_f16(
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);

enum ggml_type const k_vec_dot_type = type_traits[k->type].vec_dot_type;
ggml_from_float_t const q_to_vec_dot = type_traits[k_vec_dot_type].from_float;
ggml_vec_dot_t const kq_vec_dot = type_traits[k->type].vec_dot;
ggml_to_float_t const v_to_float = type_traits[v->type].to_float;

// loop over n_batch and n_head
for (int ir = ir0; ir < ir1; ++ir) {
// q indices
const int iq3 = ir/(neq2*neq1);
const int iq2 = (ir - iq3*neq2*neq1)/neq1;
const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);

const uint32_t h = iq2; // head
const uint32_t h = iq2; // head index
const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;

float S = 0.0f;
float M = -INFINITY;
float S = 0.0f; // sum
float M = -INFINITY; // maximum KQ value

float * V32 = (float *) params->wdata + ith*(2*D + CACHE_LINE_SIZE_F32);
ggml_fp16_t * Q16 = (ggml_fp16_t *) (V32); // reuse memory
ggml_fp16_t * V16 = (ggml_fp16_t *) (V32 + D);
float * VKQ32 = (float *) params->wdata + ith*(3*D + CACHE_LINE_SIZE_F32); // FP32 VKQ accumulator
float * V32 = (VKQ32 + 1*D); // (temporary) FP32 V buffer
ggml_fp16_t * VKQ16 = (ggml_fp16_t *) (VKQ32 + 1*D); // (temporary) FP16 VKQ accumulator
ggml_fp16_t * Q_q = (ggml_fp16_t *) (VKQ32 + 2*D); // (temporary) buffer for Q converted to quantized/FP16

memset(V16, 0, D*sizeof(ggml_fp16_t));
if (v->type == GGML_TYPE_F16) {
memset(VKQ16, 0, D*sizeof(ggml_fp16_t));
} else {
memset(VKQ32, 0, D*sizeof(float));
}

const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;

Expand All @@ -15967,6 +15978,9 @@ static void ggml_compute_forward_flash_attn_ext_f16(
const int iv3 = iq3 / rv3;
const int iv2 = iq2 / rv2;

const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
q_to_vec_dot(pq, Q_q, D);

// online softmax / attention
// loop over n_kv and n_head_kv
// ref: https://arxiv.org/pdf/2112.05682.pdf
Expand All @@ -15976,52 +15990,67 @@ static void ggml_compute_forward_flash_attn_ext_f16(
continue;
}

float s;
float s; // KQ value

// convert Q to F16 in V32
{
const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
const char * k_data = (const char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3);
kq_vec_dot(D, &s, 0, k_data, 0, Q_q, 0, 1);

for (int64_t d = 0; d < D; ++d) {
Q16[d] = GGML_FP32_TO_FP16(pq[d]);
}
}
s = s*scale + mv; // scale KQ value and apply mask

ggml_vec_dot_f16(D,
&s, 0,
(ggml_fp16_t *) ((char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
Q16, 0, 1);
const float Mold = M;

s = s*scale + mv;
float ms = 1.0f; // upon new higher max val, scale VKQ and KQ sum with this value
float vs = 1.0f; // post-softmax KQ value, expf(s - M)

const float Mold = M;
const char * v_data = ((const char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));

float ms = 1.0f;
float vs = 1.0f;
if (v->type== GGML_TYPE_F16) {
if (s > M) {
// s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
M = s;
ms = expf(Mold - M);

if (s > M) {
M = s;
ms = expf(Mold - M);
// V = V*expf(Mold - M)
ggml_vec_scale_f16(D, VKQ16, ms);
} else {
// no new maximum, ms == 1.0f, vs != 1.0f
vs = expf(s - M);
}

// V = V*expf(Mold - M)
ggml_vec_scale_f16(D, V16, ms);
// V += v*expf(s - M)
ggml_vec_mad_f16(D, VKQ16, (const ggml_fp16_t *) v_data, vs);
} else {
vs = expf(s - M);
}
if (s > M) {
// s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
M = s;
ms = expf(Mold - M);

const ggml_fp16_t * v16 = (const ggml_fp16_t *) ((char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
// V = V*expf(Mold - M)
ggml_vec_scale_f32(D, VKQ32, ms);
} else {
// no new maximum, ms == 1.0f, vs != 1.0f
vs = expf(s - M);
}

// V += v*expf(s - M)
ggml_vec_mad_f16(D, V16, v16, vs);
v_to_float(v_data, V32, D);

S = S*ms + vs;
// V += v*expf(s - M)
ggml_vec_mad_f32(D, VKQ32, V32, vs);
}

S = S*ms + vs; // scale and increment sum with partial sum
}

// V /= S
for (int64_t d = 0; d < D; ++d) {
V32[d] = GGML_FP16_TO_FP32(V16[d])/S;
if (v->type == GGML_TYPE_F16) {
for (int64_t d = 0; d < D; ++d) {
VKQ32[d] = GGML_FP16_TO_FP32(VKQ16[d]);
}
}

// V /= S
const float S_inv = 1.0f/S;
ggml_vec_scale_f32(D, VKQ32, S_inv);

// dst indices
const int i1 = iq1;
const int i2 = iq2;
Expand All @@ -16031,7 +16060,7 @@ static void ggml_compute_forward_flash_attn_ext_f16(
//memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));

// permute(0, 2, 1, 3)
memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, V32, nb1);
memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1);
}
}

Expand Down Expand Up @@ -19972,7 +20001,7 @@ struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threa
{
const int64_t ne00 = node->src[0]->ne[0]; // D

cur = 2*sizeof(float)*ne00*n_tasks; // 2x head size
cur = 3*sizeof(float)*ne00*n_tasks; // 3x head size/thread
} break;
case GGML_OP_FLASH_FF:
{
Expand Down

0 comments on commit 5ca49cb

Please sign in to comment.