Skip to content

Repository of the online EM code for multiple mixture models

Notifications You must be signed in to change notification settings

geoffroyO/HD-MED

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Online EM Algorithm for HD-MED

This is the code of the online EM algorithm for HD-MED and MED currently this package has online EM versions of:

  • Standard Gaussian Mixture Model and t-distribution Mixture Model
  • High-Dimensional Gaussian Mixture Model and High Dimensional t-distribtuion Mixture Model

Basic Usage

Training of the dataset X

from onlineEM import em_config
from onlineEM.hd import hdgmm



config = {
    "n_components": 3, # Number of component of the mixture
    "num_features": 5,  # Number of features
    "num_epochs": 3, # Number of epochs
    "mini_batch_size": 256, # Size of the mini-batched
}

config = em_config(**config) # Create the configuration object

model_hd = hdgmm()

config_hd, params_hd, stats_hd = model_hd.burnin(X, config) # Initialize the model
params_hd, stats_hd = model_hd.online_epochs(X, params_hd, stats_hd, config_hd) # Train the model

Dimension reduction

🚨 This only works for High-Dimensional models 🚨

X_red, idx_clf = hdgmm.project(X, params_hd, config) # Project the initial high-dimensional data to lower different subspaces

# outputs low dimensional data X_red in a form of a list of arrays  for different clusters along with their associated index idx_clf in the original array

X_decompressed = hdgmm.inv_project(X_red, idx_clf)
👩‍💻 Basic exemple in notebook/. 👨‍💻

References

  • [1] Oudoumanessah, G., Coudert, T., Meyer, L., Delphin, A., Dojat, M., Lartizien, C., & Forbes, F. Cluster globally, Reduce locally: Scalable efficient dictionary compression for magnetic resonance fingerprinting. In 2025 IEEE 22th International Symposium on Biomedical Imaging (ISBI).

  • [2] Oudoumanessah, G., Coudert, T., Lartizien, C., Dojat, M., Christen, T., & Forbes, F. (2024). Scalable magnetic resonance fingerprinting: Incremental inference of high dimensional elliptical mixtures from large data volumes. arXiv preprint arXiv:2412.10173.

Todo

  • Implement Ruppert-Polyak Averaging and find a way to average variables in the Stiefel manifold

About

Repository of the online EM code for multiple mixture models

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published