Skip to content

Fast and customizable table widget for the Jupyter ecosystem

Notifications You must be signed in to change notification settings

gab23r/ipyvuetable

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

52 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ipyvuetable

Fast and customizable table widget for the Jupyter ecosystem build on ipyvuetify and Polars.

ipyvuetable can sort, filter, edit large polars.LazyFrame in a paginated way. You can easily customize you table widget, add actions, hide columns, add special visualisation for some columns and benefit from all the ipyvuetify customization

from ipyvuetable import EditingTable, Table
import polars as pl
df = (
    pl.LazyFrame({
        'id': range(6), 
        'name': ['Tom', 'Joseph', 'Krish', 'John', 'Alice', 'Bod'],
        'birthday': ['01-03-1995', '27-01-1999', '24-07-1977', '27-12-1970', '17-07-2005', '19-09-2001'],
        'score': [3.5, 4.0, 7.5, 1.0, 6.5, 8.2],
        'bool': [True, True, False, True, False, True]
    })
    .with_columns(pl.col('birthday').str.strptime(pl.Datetime, "%d-%m-%Y"))
)

name_custom_repr = pl.LazyFrame({
    'name' : ['Tom', 'Joseph', 'Krish', 'John', 'Alice', 'Bod'],
    'name__repr' : ['Tom - 🐬', 'Joseph - 🐟', 'Krish - 🐠 ', 'John - 🦐', 'Alice - 🦞', 'Bob - 🐌']
})

EditingTable(
    df = df, 
    title = 'My table', 
    
    show_filters=True,
    columns_to_hide = ['id'],
    
    # all ipyvuetify options
    show_select = True,
    
    columns_repr = {'name' : name_custom_repr}
)

EditingTable

Installation

Install the latest ipyvuetable version with:

pip install ipyvuetable

Benefit from keyboard events with:

pip install ipyvuetable[ipyevents]

About

Fast and customizable table widget for the Jupyter ecosystem

Resources

Stars

Watchers

Forks

Packages

No packages published