-
Notifications
You must be signed in to change notification settings - Fork 18
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
✨ Haar Perceptual Similarity Index (HaarPSI)
- Loading branch information
1 parent
2364fbc
commit 3227b26
Showing
3 changed files
with
241 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,221 @@ | ||
r"""Haar Perceptual Similarity Index (HaarPSI) | ||
This module implements the HaarPSI in PyTorch. | ||
Wikipedia: | ||
https://en.wikipedia.org/wiki/Haar_wavelet | ||
Credits: | ||
Inspired by [haarpsi](https://github.com/rgcda/haarpsi) | ||
References: | ||
[1] A Haar Wavelet-Based Perceptual Similarity Index for | ||
Image Quality Assessment | ||
(Reisenhofer et al., 2018) | ||
https://arxiv.org/abs/1607.06140 | ||
""" | ||
|
||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
|
||
from piqa.utils import build_reduce, haar_kernel, filter2d | ||
|
||
_YIQ_WEIGHTS = torch.FloatTensor([ | ||
[0.299, 0.587, 0.114], | ||
[0.596, -0.274, -0.322], | ||
[0.211, -0.523, 0.312], | ||
]) | ||
|
||
|
||
def _haarpsi( | ||
x: torch.Tensor, | ||
y: torch.Tensor, | ||
value_range: float = 1., | ||
n_kernels: int = 3, | ||
c: float = 0.00046, # 30. / (255. ** 2) | ||
alpha: float = 4.2, | ||
) -> torch.Tensor: | ||
r"""Returns the HaarPSI between `x` and `y`, | ||
without color space conversion. | ||
`_haarpsi` is an auxiliary function for `haarpsi` and `HaarPSI`. | ||
Args: | ||
x: An input tensor, (N, 3 or 1, H, W). | ||
y: A target tensor, (N, 3 or 1, H, W). | ||
value_range: The number of value range of the inputs (usually 1. or 255). | ||
n_kernels: The number of Haar wavelet kernels to use. | ||
For the remaining arguments, refer to [1]. | ||
Example: | ||
>>> x = torch.rand(5, 3, 256, 256) | ||
>>> y = torch.rand(5, 3, 256, 256) | ||
>>> l = _haarpsi(x, y) | ||
>>> l.size() | ||
torch.Size([5]) | ||
""" | ||
|
||
c *= value_range ** 2 | ||
|
||
# Y | ||
|
||
## Gradient(s) | ||
g_xy = [] | ||
|
||
for j in range(1, n_kernels + 1): | ||
kernel_size = 2 ** j | ||
half_size = kernel_size // 2 | ||
|
||
### Haar wavelet kernel | ||
kernel = haar_kernel(kernel_size) | ||
kernel = torch.stack([kernel, kernel.t()]).unsqueeze(1) | ||
kernel = kernel.to(x.device) | ||
|
||
### Haar filter (gradient) | ||
pad = (half_size - 1, half_size, half_size - 1, half_size) | ||
g_x = filter2d(F.pad(x[:, :1], pad=pad), kernel).abs() | ||
g_y = filter2d(F.pad(y[:, :1], pad=pad), kernel).abs() | ||
|
||
g_xy.append((g_x, g_y)) | ||
|
||
## Gradient similarity(ies) | ||
gs = [] | ||
for g_x, g_y in g_xy[:-1]: | ||
gs.append((2. * g_x * g_y + c) / (g_x ** 2 + g_y ** 2 + c)) | ||
|
||
## Local similarity(ies) | ||
ls = sum(gs) / 2. # (N, 2, H, W) | ||
|
||
## Weight(s) | ||
w = torch.stack(g_xy[-1], dim=-1).max(dim=-1)[0] # (N, 2, H, W) | ||
|
||
# IQ | ||
if x.size(1) == 3: | ||
## Mean filter | ||
pad = (0, 1, 0, 1) | ||
m_x = F.avg_pool2d(F.pad(x[:, 1:], pad=pad), 2, stride=1).abs() | ||
m_y = F.avg_pool2d(F.pad(y[:, 1:], pad=pad), 2, stride=1).abs() | ||
|
||
## Chromatic similarity(ies) | ||
cs = (2. * m_x * m_y + c) / (m_x ** 2 + m_y ** 2 + c) | ||
|
||
## Local similarity(ies) | ||
ls = torch.cat([ls, cs.mean(1, True)], dim=1) # (N, 3, H, W) | ||
|
||
## Weight(s) | ||
w = torch.cat([w, w.mean(1, True)], dim=1) # (N, 3, H, W) | ||
|
||
# HaarPSI | ||
hs = torch.sigmoid(ls * alpha) | ||
hpsi = (hs * w).sum((-1, -2, -3)) / w.sum((-1, -2, -3)) | ||
hpsi = (torch.logit(hpsi) / alpha) ** 2 | ||
|
||
return hpsi | ||
|
||
|
||
def haarpsi( | ||
x: torch.Tensor, | ||
y: torch.Tensor, | ||
chromatic: bool = True, | ||
**kwargs, | ||
): | ||
r"""Returns the HaarPSI between `x` and `y`. | ||
Args: | ||
x: An input tensor, (N, 3, H, W). | ||
y: A target tensor, (N, 3, H, W). | ||
chromatic: Whether to use the chromatic channels of not. | ||
`**kwargs` are transmitted to `_haarpsi`. | ||
Example: | ||
>>> x = torch.rand(5, 3, 256, 256) | ||
>>> y = torch.rand(5, 3, 256, 256) | ||
>>> l = haarpsi(x, y) | ||
>>> l.size() | ||
torch.Size([5]) | ||
""" | ||
|
||
# Downsample | ||
x = F.avg_pool2d(x, kernel_size=2, ceil_mode=True) | ||
y = F.avg_pool2d(y, kernel_size=2, ceil_mode=True) | ||
|
||
# RBG to YIQ | ||
if chromatic: | ||
yiq_weights = _YIQ_WEIGHTS.view(3, 3, 1, 1) | ||
else: | ||
yiq_weights = _YIQ_WEIGHTS[:1].view(1, 3, 1, 1) | ||
|
||
yiq_weights = yiq_weights.to(x.device) | ||
|
||
x = F.conv2d(x, yiq_weights) | ||
y = F.conv2d(y, yiq_weights) | ||
|
||
return _haarpsi(x, y, **kwargs) | ||
|
||
|
||
class HaarPSI(nn.Module): | ||
r"""Creates a criterion that measures the HaarPSI | ||
between an input and a target. | ||
Args: | ||
reduction: Specifies the reduction to apply to the output: | ||
`'none'` | `'mean'` | `'sum'`. | ||
`**kwargs` are transmitted to `_haarpsi`. | ||
Shape: | ||
* Input: (N, 3, H, W) | ||
* Target: (N, 3, H, W) | ||
* Output: (N,) or (1,) depending on `reduction` | ||
Example: | ||
>>> criterion = HaarPSI().cuda() | ||
>>> x = torch.rand(5, 3, 256, 256).cuda() | ||
>>> y = torch.rand(5, 3, 256, 256).cuda() | ||
>>> l = criterion(x, y) | ||
>>> l.size() | ||
torch.Size([]) | ||
""" | ||
|
||
def __init__( | ||
self, | ||
chromatic: bool = True, | ||
reduction: str = 'mean', | ||
**kwargs, | ||
): | ||
r"""""" | ||
super().__init__() | ||
|
||
if chromatic: | ||
yiq_weights = _YIQ_WEIGHTS.view(3, 3, 1, 1) | ||
else: | ||
yiq_weights = _YIQ_WEIGHTS[:1].view(1, 3, 1, 1) | ||
|
||
self.register_buffer('yiq_weights', yiq_weights) | ||
|
||
self.reduce = build_reduce(reduction) | ||
self.kwargs = kwargs | ||
|
||
def forward( | ||
self, | ||
input: torch.Tensor, | ||
target: torch.Tensor, | ||
) -> torch.Tensor: | ||
r"""Defines the computation performed at every call. | ||
""" | ||
|
||
# Downsample | ||
input = F.avg_pool2d(input, 2, ceil_mode=True) | ||
target = F.avg_pool2d(target, 2, ceil_mode=True) | ||
|
||
# RGB to YIQ | ||
input = F.conv2d(input, self.yiq_weights) | ||
target = F.conv2d(target, self.yiq_weights) | ||
|
||
# HaarPSI | ||
l = _haarpsi(input, target, **self.kwargs) | ||
|
||
return self.reduce(l) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters