NFL Game Prediction using Hidden Markov Models
This project implements a Hidden Markov Model (HMM) to predict NFL game outcomes using historical game data. It provides a comprehensive machine learning approach to sports prediction, offering advanced analytics and predictive capabilities.
- Advanced Prediction: Uses Hidden Markov Models for game outcome prediction
- Monte Carlo Simulation: Robust risk assessment and performance analysis
- Interactive Web Interface: Streamlit-powered dashboard for model exploration
- Comprehensive Validation: Detailed model performance metrics
- Clone the repository:
git clone https://github.com/flancast90/nfl_markov_predictor.git
cd nfl_markov_predictor
- Install dependencies:
pip install -r requirements.txt
python cli.py [options]
Options:
--process
: Process input data--train
: Train HMM model--validate
: Validate model performance--montecarlo N
: Run Monte Carlo simulation
Launch the Streamlit app:
streamlit run app.py
nfl_markov_predictor/
├── app.py # Streamlit web interface
├── cli.py # Command line interface
├── markov.py # HMM implementation
├── montecarlo.py # Simulation engine
├── requirements.txt
├── data/ # Dataset storage
├── model/ # Model processing modules
│ ├── process.py
│ ├── train.py
│ ├── validate.py
│ └── utils.py
└── results/ # Simulation results
- Markov Model: Probabilistic state transition modeling
- Monte Carlo Simulation: Performance risk assessment
- Data Processing: Historical game data analysis
- Model Validation: Comprehensive performance metrics
- Accuracy
- Confusion Matrix
- Profit/Loss
- Return on Investment (ROI)
- Precision and Recall
Contributions are welcome! Please submit pull requests or open issues.
MIT License
Project Maintainer: flancast90