Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add streaming support, using HF TextStreamer #46

Merged
merged 1 commit into from
Jun 24, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
69 changes: 52 additions & 17 deletions ultravox/inference/infer.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
import threading
from typing import Optional

import librosa
Expand Down Expand Up @@ -29,7 +30,6 @@ def __init__(
self.processor = processor
self.dtype = dtype

@torch.inference_mode()
def infer(
self,
sample: datasets.VoiceSample,
Expand All @@ -38,27 +38,36 @@ def infer(
) -> base.VoiceOutput:
inputs = self._dataproc(sample)
input_len = inputs["input_ids"].shape[1]
temperature = temperature or None
do_sample = temperature is not None

terminators = [self.tokenizer.eos_token_id]
if "<|eot_id|>" in self.tokenizer.added_tokens_encoder:
terminators.append(self.tokenizer.convert_tokens_to_ids("<|eot_id|>"))

output = self.model.generate(
**inputs,
do_sample=do_sample,
max_new_tokens=max_tokens or MAX_TOKENS,
temperature=temperature,
repetition_penalty=REPETITION_PENALTY,
pad_token_id=self.tokenizer.eos_token_id,
eos_token_id=terminators,
)
output = self._generate(inputs, max_tokens, temperature)
output_tokens = output[0][input_len:]
output_text = self.tokenizer.decode(output_tokens, skip_special_tokens=True)
output_len = len(output_tokens)
return base.VoiceOutput(output_text, input_len, output_len)

def infer_stream(
self,
sample: datasets.VoiceSample,
max_tokens: Optional[int] = None,
temperature: Optional[float] = None,
) -> base.InferenceGenerator:
inputs = self._dataproc(sample)
input_tokens = inputs["input_ids"].shape[1]
decode_kwargs = {"skip_special_tokens": True}
streamer = transformers.TextIteratorStreamer(
self.tokenizer, skip_prompt=True, decode_kwargs=decode_kwargs
)

thread_args = (inputs, max_tokens, temperature, streamer)
thread = threading.Thread(target=self._generate, args=thread_args)
thread.start()
output_tokens = 0
for chunk in streamer:
if chunk:
yield base.InferenceChunk(chunk)
output_tokens += 1
yield base.InferenceStats(input_tokens, output_tokens)
thread.join()

def _dataproc(self, sample: datasets.VoiceSample):
text_input = self.tokenizer.apply_chat_template(
sample.messages, add_generation_prompt=True, tokenize=False
Expand Down Expand Up @@ -94,3 +103,29 @@ def _dataproc(self, sample: datasets.VoiceSample):
if "audio_values" in inputs:
inputs["audio_values"] = inputs["audio_values"].to(dtype=self.dtype)
return inputs

@torch.inference_mode()
def _generate(
self,
inputs: torch.Tensor,
max_tokens: Optional[int] = None,
temperature: Optional[float] = None,
streamer: Optional[transformers.TextStreamer] = None,
):
temperature = temperature or None
do_sample = temperature is not None

terminators = [self.tokenizer.eos_token_id]
if "<|eot_id|>" in self.tokenizer.added_tokens_encoder:
terminators.append(self.tokenizer.convert_tokens_to_ids("<|eot_id|>"))

return self.model.generate(
**inputs,
do_sample=do_sample,
max_new_tokens=max_tokens or MAX_TOKENS,
temperature=temperature,
repetition_penalty=REPETITION_PENALTY,
pad_token_id=self.tokenizer.eos_token_id,
eos_token_id=terminators,
streamer=streamer,
)
12 changes: 11 additions & 1 deletion ultravox/inference/infer_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,16 @@ def __init__(
tokenizer: transformers.PreTrainedTokenizer,
audio_processor: transformers.ProcessorMixin,
):
def fake_generate(**kwargs):
input = kwargs.get("input_ids")
output = [range(25)]
streamer = kwargs.get("streamer", None)
if streamer:
for token in output[0][input.shape[1] :]:
streamer.on_finalized_text(tokenizer.decode(token))
streamer.on_finalized_text("", stream_end=True)
return output

processor = ultravox_processing.UltravoxProcessor(
audio_processor, tokenizer=tokenizer
)
Expand All @@ -44,7 +54,7 @@ def __init__(
dtype=torch.float32,
)
self.model.device = "cpu"
self.model.generate = mock.MagicMock(return_value=[range(25)])
self.model.generate = mock.MagicMock(side_effect=fake_generate)


EXPECTED_TOKEN_IDS_START = [128000, 128006, 882, 128007]
Expand Down
Loading