Skip to content

fivetran/dbt_facebook_pages

Repository files navigation

Facebook Pages Modeling dbt Package (Docs)

What does this dbt package do?

The main focus of the package is to transform the core social media object tables into analytics-ready models that can be easily unioned in to other social media platform packages to get a single view. This is aided by our Social Media Reporting package.

This package also generates a comprehensive data dictionary of your source and modeled Facebook Pages data via the dbt docs site.

You can also refer to the table below for a detailed view of all tables materialized by default within this package.

Table Description
facebook_pages__pages_report Each record represents the daily performance of a Facebook Page.
facebook_pages__posts_report Each record represents the daily performance of a Facebook post.

How do I use the dbt package?

Step 1: Pre-Requisites

You will need to ensure you have the following before leveraging the dbt package.

  • Connector: Have the Fivetran Facebook Pages connector syncing data into your warehouse.
  • Database support: This package has been tested on BigQuery, Snowflake, Redshift, Databricks, and Postgres. Ensure you are using one of these supported databases.

Databricks Additional Configuration

If you are using a Databricks destination with this package you will need to add the below (or a variation of the below) dispatch configuration within your root dbt_project.yml. This is required in order for the package to accurately search for macros within the dbt-labs/spark_utils then the dbt-labs/dbt_utils packages respectively.

dispatch:
  - macro_namespace: dbt_utils
    search_order: ['spark_utils', 'dbt_utils']

Step 2: Installing the Package

Include the following Facebook Pages package version in your packages.yml

Check dbt Hub for the latest installation instructions, or read the dbt docs for more information on installing packages.

packages:
  - package: fivetran/facebook_pages
    version: [">=0.3.0", "<0.4.0"] # we recommend using ranges to capture non-breaking changes automatically

Do NOT include the facebook_pages_source package in this file. The transformation package itself has a dependency on it and will install the source package as well.

Step 3: Configure Your Variables

Database and Schema Variables

By default, this package will look for your Facebook Pages data in the facebook_pages schema of your target database. If this is not where your Facebook Pages data is, add the following configuration to your dbt_project.yml file:

vars:
    facebook_pages_schema: your_schema_name
    facebook_pages_database: your_database_name 

(Optional) Step 4: Additional Configurations

Expand for configurations

Changing the Build Schema

By default, this package will build the Facebook Pages staging models within a schema titled (<target_schema> + _stg_facebook_pages) and the final Facebook Pages models within a schema titled (<target_schema> + _facebook_pages) in your target database. If this is not where you would like your Facebook Pages staging data to be written to, add the following configuration to your dbt_project.yml file:

models:
    facebook_pages:
      +schema: my_new_schema_name # leave blank for just the target_schema
    facebook_pages_source:
      +schema: my_new_schema_name # leave blank for just the target_schema

Change the source table references

If an individual source table has a different name than the package expects, add the table name as it appears in your destination to the respective variable:

IMPORTANT: See this project's dbt_project.yml variable declarations to see the expected names.

vars:
    facebook_pages_<default_source_table_name>_identifier: your_table_name 

Unioning Multiple Facebook Pages Connectors

If you have multiple Facebook Pages connectors in Fivetran and would like to use this package on all of them simultaneously, we have provided functionality to do so. The package will union all of the data together and pass the unioned table(s) into the final models. You will be able to see which source it came from in the source_relation column(s) of each model. To use this functionality, you will need to set either (note that you cannot use both) the union_schemas or union_databases variables:

# dbt_project.yml
...
config-version: 2
vars:
    ##You may set EITHER the schemas variables below
    facebook_pages_union_schemas: ['facebook_pages_one','facebook_pages_two']

    ##Or may set EITHER the databases variables below
    facebook_pages_union_databases: ['facebook_pages_one','facebook_pages_two']

(Optional) Step 5: Orchestrate your models with Fivetran Transformations for dbt Core™

Expand for configurations

Fivetran offers the ability for you to orchestrate your dbt project through the Fivetran Transformations for dbt Core™ product. Refer to the linked docs for more information on how to setup your project for orchestration through Fivetran.

Does this package have dependencies?

This dbt package is dependent on the following dbt packages. These dependencies are installed by default within this package. For more information on the following packages, refer to the dbt hub site.

IMPORTANT: If you have any of these dependent packages in your own packages.yml file, we highly recommend that you remove them from your root packages.yml to avoid package version conflicts.

packages:
    - package: fivetran/facebook_pages_source
      version: [">=0.3.0", "<0.4.0"]

    - package: fivetran/fivetran_utils
      version: [">=0.4.0", "<0.5.0"]

    - package: dbt-labs/dbt_utils
      version: [">=1.0.0", "<2.0.0"]

    - package: dbt-labs/spark_utils
      version: [">=0.3.0", "<0.4.0"]

How is this package maintained and can I contribute?

Package Maintenance

The Fivetran team maintaining this package only maintains the latest version of the package. We highly recommend you stay consistent with the latest version of the package and refer to the CHANGELOG and release notes for more information on changes across versions.

Contributions

These dbt packages are developed by a small team of analytics engineers at Fivetran. However, the packages are made better by community contributions.

We highly encourage and welcome contributions to this package. Check out this post on the best workflow for contributing to a package.

Are there any resources available?