Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update torch requirement from <1.10,>=1.7 to >=1.7,<1.11 #170

Merged
merged 1 commit into from
Nov 23, 2021

Conversation

dependabot[bot]
Copy link
Contributor

@dependabot dependabot bot commented on behalf of github Oct 29, 2021

Updates the requirements on torch to permit the latest version.

Release notes

Sourced from torch's releases.

PyTorch 1.10 Release, including CUDA Graphs APIs, Frontend and compiler improvements

1.10.0 Release Notes

  • Highlights
  • Backwards Incompatible Change
  • New Features
  • Improvements
  • Performance
  • Documentation

Highlights

We are excited to announce the release of PyTorch 1.10. This release is composed of over 3,400 commits since 1.9, made by 426 contributors. We want to sincerely thank our community for continuously improving PyTorch.

PyTorch 1.10 updates are focused on improving training and performance of PyTorch, and developer usability. Highlights include:

  • CUDA Graphs APIs are integrated to reduce CPU overheads for CUDA workloads.
  • Several frontend APIs such as FX, torch.special, and nn.Module Parametrization, have moved from beta to stable.
  • Support for automatic fusion in JIT Compiler expands to CPUs in addition to GPUs.
  • Android NNAPI support is now available in beta.

You can check the blogpost that shows the new features here.

Backwards Incompatible changes

Python API

torch.any/torch.all behavior changed slightly to be more consistent for zero-dimension, uint8 tensors. (#64642)

These two functions match the behavior of NumPy, returning an output dtype of bool for all support dtypes, except for uint8 (in which case they return a 1 or a 0, but with uint8 dtype). In some cases with 0-dim tensor inputs, the returned uint8 value could mistakenly take on a value > 1. This has now been fixed.

... (truncated)

Changelog

Sourced from torch's changelog.

Releasing PyTorch

General Overview

Releasing a new version of PyTorch generally entails 3 major steps:

  1. Cutting a release branch and making release branch specific changes
  2. Drafting RCs (Release Candidates), and merging cherry picks
  3. Promoting RCs to stable

Cutting release branches

Release branches are typically cut from the branch viable/strict as to ensure that tests are passing on the release branch.

Release branches should be prefixed like so:

release/{MAJOR}.{MINOR}

An example of this would look like:

release/1.8

Please make sure to create branch that pins divergent point of release branch from the main branch, i.e. orig/release/{MAJOR}.{MINOR}

Making release branch specific changes

These are examples of changes that should be made to release branches so that CI / tooling can function normally on them:

... (truncated)

Commits

Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


Dependabot commands and options

You can trigger Dependabot actions by commenting on this PR:

  • @dependabot rebase will rebase this PR
  • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
  • @dependabot merge will merge this PR after your CI passes on it
  • @dependabot squash and merge will squash and merge this PR after your CI passes on it
  • @dependabot cancel merge will cancel a previously requested merge and block automerging
  • @dependabot reopen will reopen this PR if it is closed
  • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
  • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
  • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
  • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)

Updates the requirements on [torch](https://github.com/pytorch/pytorch) to permit the latest version.
- [Release notes](https://github.com/pytorch/pytorch/releases)
- [Changelog](https://github.com/pytorch/pytorch/blob/master/RELEASE.md)
- [Commits](pytorch/pytorch@v1.7.0...v1.10.0)

---
updated-dependencies:
- dependency-name: torch
  dependency-type: direct:development
...

Signed-off-by: dependabot[bot] <support@github.com>
@dependabot dependabot bot added the dependencies Updates to dependencies label Oct 29, 2021
@n-hutton n-hutton merged commit ceb433f into master Nov 23, 2021
@n-hutton n-hutton deleted the dependabot/pip/master/torch-gte-1.7-and-lt-1.11 branch November 23, 2021 13:55
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
dependencies Updates to dependencies
Projects
None yet
Development

Successfully merging this pull request may close these issues.

1 participant