Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix some typos in docs/cards #23

Merged
merged 2 commits into from
Jan 17, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -39,6 +39,8 @@ result = results[0]
boxes = result.boxes.xyxy # x1, y1, x2, y2
scores = result.boxes.conf
categories = result.boxes.cls
scores = result.probs # for classification models
masks = result.masks # for segmentation models

# show results on image
render = render_result(result)
Expand Down
2 changes: 1 addition & 1 deletion ultralyticsplus/__init__.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
from .hf_utils import download_from_hub, push_to_hfhub
from .ultralytics_utils import YOLO, postprocess_classify_output, render_result

__version__ = "0.0.11"
__version__ = "0.0.12"
26 changes: 14 additions & 12 deletions ultralyticsplus/hf_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,10 +33,10 @@ def generate_model_usage_markdown(

if hf_task == "image-segmentation":
import_str = "from ultralyticsplus import YOLO, render_result"
postprocess_str = """ print(result.boxes)
print(result.masks)
render = render_result(model=model, image=image, result=result)
render.show()"""
postprocess_str = """print(results[0].boxes)
print(results[0].masks)
render = render_result(model=model, image=image, result=results[0])
render.show()"""
model_params_str = """model.overrides['conf'] = 0.25 # NMS confidence threshold
model.overrides['iou'] = 0.45 # NMS IoU threshold
model.overrides['agnostic_nms'] = False # NMS class-agnostic
Expand All @@ -50,9 +50,9 @@ def generate_model_usage_markdown(

elif hf_task == "object-detection":
import_str = "from ultralyticsplus import YOLO, render_result"
postprocess_str = """ print(result.boxes)
render = render_result(model=model, image=image, result=result)
render.show()"""
postprocess_str = """print(results[0].boxes)
render = render_result(model=model, image=image, result=results[0])
render.show()"""
model_params_str = """model.overrides['conf'] = 0.25 # NMS confidence threshold
model.overrides['iou'] = 0.45 # NMS IoU threshold
model.overrides['agnostic_nms'] = False # NMS class-agnostic
Expand All @@ -63,9 +63,9 @@ def generate_model_usage_markdown(

elif hf_task == "image-classification":
import_str = "from ultralyticsplus import YOLO, postprocess_classify_output"
postprocess_str = """ print(result.probs) # [0.1, 0.2, 0.3, 0.4]
processed_result = postprocess_classify_output(model, result=result)
print(processed_result) # {"cat": 0.4, "dog": 0.6}"""
postprocess_str = """print(results[0].probs) # [0.1, 0.2, 0.3, 0.4]
processed_result = postprocess_classify_output(model, result=results[0])
print(processed_result) # {"cat": 0.4, "dog": 0.6}"""
model_params_str = """model.overrides['conf'] = 0.25 # model confidence threshold"""
metrics_str = f""" - type: accuracy
value: {score_top1_acc} # min: 0.0 - max: 1.0
Expand All @@ -74,8 +74,8 @@ def generate_model_usage_markdown(
value: {score_top5_acc} # min: 0.0 - max: 1.0
name: top5 accuracy"""

custom_tags_str = ''
if custom_tags:
custom_tags_str = ''
for ind, custom_tag in enumerate(custom_tags):
custom_tags_str += f"- {custom_tag}"
if ind != len(custom_tags) - 1:
Expand Down Expand Up @@ -152,7 +152,9 @@ def generate_model_usage_markdown(
image = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'

# perform inference
for result in model.predict(image, return_outputs=True):
results = model.predict(image)

# observe results
{postprocess_str}
```

Expand Down