Skip to content

Commit

Permalink
[Feature] Add Maskfeat Support (open-mmlab#485)
Browse files Browse the repository at this point in the history
* [Feature]: Add MaskfeatMaskGenerator Pipeline

* [Feature]: Add HogLayerC for MaskFeat

* [Feature]: Add Backbone of MaskFeat

* [Feature]: Add Head of MaskFeat

* [Feature]: Add Algorithms of MaskFeat

* [Feature]: Add Config of MaskFeat

* [Doc] Update Readme of MaskFeat

* [Fix] fix ut and hog_layer.

* [fix] Add and correct docstring

* [Fix] Refine the docstring of MaskFeat

* [fix] fix value of trunc_normal_

* [fix] rename the finetune config of maskfeat

* [fix] rename the fine-tuning config of maskfeat

* [fix] rename the fine-tuning config of maskfeat

* [fix] add new paramwise_options in fine-tuning config

* [fix] update the top-1 accuary of maskfeat

* [fix] update the top-1 accuary of maskfeat in model_zoo

* [fix] rename MaskfeatMaskGenerator
  • Loading branch information
daidaiershidi authored and fangyixiao18 committed Oct 1, 2022
1 parent 08690d1 commit 09b5e29
Show file tree
Hide file tree
Showing 23 changed files with 927 additions and 19 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,76 @@
_base_ = [
'../_base_/models/vit-base-p16_ft.py',
'../_base_/datasets/imagenet.py',
'../_base_/schedules/adamw_coslr-100e_in1k.py',
'../_base_/default_runtime.py',
]
# maskfeat fine-tuning setting

# dataset
img_norm_cfg = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
train_pipeline = [
dict(
type='RandomAug',
input_size=224,
color_jitter=0.4,
auto_augment='rand-m9-mstd0.5-inc1',
interpolation='bicubic',
re_prob=0.25,
re_mode='pixel',
re_count=1,
mean=(0.485, 0.456, 0.406),
std=(0.229, 0.224, 0.225))
]
test_pipeline = [
dict(type='Resize', size=256, interpolation=3),
dict(type='CenterCrop', size=224),
dict(type='ToTensor'),
dict(type='Normalize', **img_norm_cfg)
]
data = dict(
samples_per_gpu=256,
drop_last=False,
workers_per_gpu=32,
train=dict(pipeline=train_pipeline),
val=dict(pipeline=test_pipeline))

# model
model = dict(
backbone=dict(init_cfg=dict()),
head=dict(
type='MaskFeatFinetuneHead',
num_classes=1000,
embed_dim=768,
label_smooth_val=0.1))

# optimizer
optimizer = dict(
lr=0.002 * 8 / 2,
betas=(0.9, 0.999),
weight_decay=0.05,
paramwise_options={
'ln': dict(weight_decay=0.),
'bias': dict(weight_decay=0.),
'pos_embed': dict(weight_decay=0.),
'cls_token': dict(weight_decay=0.),
},
constructor='TransformerFinetuneConstructor',
model_type='vit',
layer_decay=0.65)

# learning policy
lr_config = dict(
policy='CosineAnnealing',
min_lr=1e-6,
warmup='linear',
warmup_iters=20,
warmup_ratio=1e-08,
warmup_by_epoch=True)

# runtime
checkpoint_config = dict(interval=1, max_keep_ckpts=3, out_dir='')
persistent_workers = True
log_config = dict(
interval=100, hooks=[
dict(type='TextLoggerHook'),
])
35 changes: 35 additions & 0 deletions configs/selfsup/_base_/datasets/imagenet_maskfeat.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
# dataset settings
data_source = 'ImageNet'
dataset_type = 'SingleViewDataset'
img_norm_cfg = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
train_pipeline = [
dict(
type='RandomResizedCropAndInterpolationWithTwoPic',
size=224,
scale=(0.5, 1.0),
ratio=(0.75, 1.3333),
interpolation='bicubic'),
dict(type='RandomHorizontalFlip')
]

# prefetch
prefetch = False
if not prefetch:
train_pipeline.extend(
[dict(type='ToTensor'),
dict(type='Normalize', **img_norm_cfg)])

train_pipeline.append(dict(type='MaskFeatMaskGenerator', mask_ratio=0.4))

# dataset summary
data = dict(
samples_per_gpu=256,
workers_per_gpu=8,
train=dict(
type=dataset_type,
data_source=dict(
type=data_source,
data_prefix='data/imagenet/train',
ann_file='data/imagenet/meta/train.txt'),
pipeline=train_pipeline,
prefetch=prefetch))
15 changes: 15 additions & 0 deletions configs/selfsup/_base_/models/maskfeat_vit-base-p16.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,15 @@
# model settings
model = dict(
type='MaskFeat',
backbone=dict(
type='MaskFeatViT',
arch='b',
patch_size=16,
drop_path_rate=0,
),
head=dict(type='MaskFeatPretrainHead', hog_dim=108),
hog_para=dict(
nbins=9, # Number of bin. Defaults to 9.
pool=8, # Number of cell. Defaults to 8.
gaussian_window=16 # Size of gaussian kernel. Defaults to 16.
))
34 changes: 34 additions & 0 deletions configs/selfsup/maskfeat/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
# MaskFeat

> [Masked Feature Prediction for Self-Supervised Visual Pre-Training](https://arxiv.org/abs/2112.09133v1)
<!-- [ALGORITHM] -->

## Abstract

We present Masked Feature Prediction (MaskFeat) for self-supervised pre-training of video models. Our approach first randomly masks out a portion of the input sequence and then predicts the feature of the masked regions. We study five different types of features and find Histograms of Oriented Gradients (HOG), a hand-crafted feature descriptor, works particularly well in terms of both performance and efficiency. We observe that the local contrast normalization in HOG is essential for good results, which is in line with earlier work using HOG for visual recognition. Our approach can learn abundant visual knowledge and drive large-scale Transformer-based models. Without using extra model weights or supervision, MaskFeat pre-trained on unlabeled videos achieves unprecedented results of 86.7% with MViT-L on Kinetics-400, 88.3% on Kinetics-600, 80.4% on Kinetics-700, 38.8 mAP on AVA, and 75.0% on SSv2. MaskFeat further generalizes to image input, which can be interpreted as a video with a single frame and obtains competitive results on ImageNet.

<div align="center">
<img src="https://user-images.githubusercontent.com/48178838/190090285-428f07c0-0887-4ce8-b94f-f719cfd25622.png" width="60%"/>
</div>

## Models and Benchmarks

Here, we report the results of the model, which is pre-trained on ImageNet-1k
for 400 epochs, the details are below:

| Backbone | Pre-train epoch | Fine-tuning Top-1 | Pre-train Config | Fine-tuning Config | Download |
| :------: | :-------------: | :---------------: | :------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| ViT-B/16 | 300 | 83.5 | [config](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/maskfeat/maskfeat_vit-base-p16_8xb256-coslr-300e_in1k.py) | [config](https://github.com/open-mmlab/mmselfsup/blob/master/configs/benchmarks/classification/imagenet/maskfeat_vit-base-p16_ft-8xb512-coslr-100e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/mae/mae_vit-base-p16_8xb512-coslr-400e_in1k-224_20220223-85be947b.pth) \| [log](https://download.openmmlab.com/mmselfsup/mae/mae_vit-base-p16_8xb512-coslr-300e_in1k-224_20220210_140925.log.json) |

## Citation

```bibtex
@article{He2021MaskedAA,
title={Masked Autoencoders Are Scalable Vision Learners},
author={Kaiming He and Xinlei Chen and Saining Xie and Yanghao Li and
Piotr Doll'ar and Ross B. Girshick},
journal={ArXiv},
year={2021}
}
```
Original file line number Diff line number Diff line change
@@ -0,0 +1,40 @@
_base_ = [
'../_base_/models/maskfeat_vit-base-p16.py',
'../_base_/datasets/imagenet_maskfeat.py',
'../_base_/schedules/adamw_coslr-300e_in1k.py',
'../_base_/default_runtime.py',
]

# dataset
data = dict(samples_per_gpu=256, workers_per_gpu=32)

# optimizer
optimizer = dict(
lr=2e-4 * 8,
betas=(0.9, 0.999),
weight_decay=0.05,
paramwise_options={
'ln': dict(weight_decay=0.),
'bias': dict(weight_decay=0.),
})
optimizer_config = dict(grad_clip=dict(max_norm=0.02))

# learning policy
lr_config = dict(
policy='CosineAnnealing',
min_lr=1e-6,
warmup='linear',
warmup_iters=30,
warmup_ratio=1e-06,
warmup_by_epoch=True)

# schedule
runner = dict(max_epochs=300)

# runtime
checkpoint_config = dict(interval=1, max_keep_ckpts=3, out_dir='')
persistent_workers = True
log_config = dict(
interval=100, hooks=[
dict(type='TextLoggerHook'),
])
27 changes: 27 additions & 0 deletions configs/selfsup/maskfeat/metafile.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
Collections:
- Name: MaskFeat
Metadata:
Training Data: ImageNet-1k
Training Techniques:
- AdamW
Training Resources: 8x A100-80G GPUs
Architecture:
- ViT
Paper:
URL: https://arxiv.org/abs/2112.09133v1
Title: "Masked Feature Prediction for Self-Supervised Visual Pre-Training"
README: configs/selfsup/maskfeat/README.md

Models:
- Name: maskfeat_vit-base-p16_8xb256-coslr-300e_in1k
In Collection: MaskFeat
Metadata:
Epochs: 300
Batch Size: 2048
Results:
- Task: Self-Supervised Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 83.5
Config: configs/selfsup/maskfeat/maskfeat_vit-base-p16_8xb256-coslr-300e_in1k.py
Weights: https://download.openmmlab.com/mmselfsup/maskfeat/maskfeat_vit-base-p16_8xb256-coslr-300e_in1k_20220913-591d4c4b.pth
34 changes: 34 additions & 0 deletions docs/en/algorithms/maskfeat.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
# MaskFeat

> [Masked Feature Prediction for Self-Supervised Visual Pre-Training](https://arxiv.org/abs/2112.09133v1)
<!-- [ALGORITHM] -->

## Abstract

We present Masked Feature Prediction (MaskFeat) for self-supervised pre-training of video models. Our approach first randomly masks out a portion of the input sequence and then predicts the feature of the masked regions. We study five different types of features and find Histograms of Oriented Gradients (HOG), a hand-crafted feature descriptor, works particularly well in terms of both performance and efficiency. We observe that the local contrast normalization in HOG is essential for good results, which is in line with earlier work using HOG for visual recognition. Our approach can learn abundant visual knowledge and drive large-scale Transformer-based models. Without using extra model weights or supervision, MaskFeat pre-trained on unlabeled videos achieves unprecedented results of 86.7% with MViT-L on Kinetics-400, 88.3% on Kinetics-600, 80.4% on Kinetics-700, 38.8 mAP on AVA, and 75.0% on SSv2. MaskFeat further generalizes to image input, which can be interpreted as a video with a single frame and obtains competitive results on ImageNet.

<div align="center">
<img src="https://user-images.githubusercontent.com/48178838/190090285-428f07c0-0887-4ce8-b94f-f719cfd25622.png" width="60%"/>
</div>

## Models and Benchmarks

Here, we report the results of the model, which is pre-trained on ImageNet-1k
for 400 epochs, the details are below:

| Backbone | Pre-train epoch | Fine-tuning Top-1 | Pre-train Config | Fine-tuning Config | Download |
| :------: | :-------------: | :---------------: | :------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| ViT-B/16 | 300 | 83.5 | [config](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/maskfeat/maskfeat_vit-base-p16_8xb256-coslr-300e_in1k.py) | [config](https://github.com/open-mmlab/mmselfsup/blob/master/configs/benchmarks/classification/imagenet/maskfeat_vit-base-p16_ft-8xb512-coslr-100e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/mae/mae_vit-base-p16_8xb512-coslr-400e_in1k-224_20220223-85be947b.pth) \| [log](https://download.openmmlab.com/mmselfsup/mae/mae_vit-base-p16_8xb512-coslr-300e_in1k-224_20220210_140925.log.json) |

## Citation

```bibtex
@article{He2021MaskedAA,
title={Masked Autoencoders Are Scalable Vision Learners},
author={Kaiming He and Xinlei Chen and Saining Xie and Yanghao Li and
Piotr Doll'ar and Ross B. Girshick},
journal={ArXiv},
year={2021}
}
```
14 changes: 8 additions & 6 deletions docs/en/model_zoo.md
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,8 @@ All models and part of benchmark results are recorded below.
| [MoCo v3](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/mocov3/README.md) | [mocov3_vit-small-p16_32xb128-fp16-coslr-300e_in1k-224](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/mocov3/mocov3_vit-small-p16_32xb128-fp16-coslr-300e_in1k-224.py) | [model](https://download.openmmlab.com/mmselfsup/moco/mocov3_vit-small-p16_32xb128-fp16-coslr-300e_in1k-224_20220225-e31238dd.pth) \| [log](https://download.openmmlab.com/mmselfsup/moco/mocov3_vit-small-p16_32xb128-fp16-coslr-300e_in1k-224_20220222_160222.log.json) |
| [MAE](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/mae/README.md) | [mae_vit-base-p16_8xb512-coslr-400e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/mae/mae_vit-base-p16_8xb512-coslr-400e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/mae/mae_vit-base-p16_8xb512-coslr-400e_in1k-224_20220223-85be947b.pth) \| [log](https://download.openmmlab.com/mmselfsup/mae/mae_vit-base-p16_8xb512-coslr-300e_in1k-224_20220210_140925.log.json) |
| [SimMIM](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simmim/README.md) | [simmim_swin-base_16xb128-coslr-100e_in1k-192](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simmim/simmim_swin-base_16xb128-coslr-100e_in1k-192.py) | [model](https://download.openmmlab.com/mmselfsup/simmim/simmim_swin-base_16xb128-coslr-100e_in1k-192_20220316-1d090125.pth) \| [log](https://download.openmmlab.com/mmselfsup/simmim/simmim_swin-base_16xb128-coslr-100e_in1k-192_20220316-1d090125.log.json) |
| [CAE](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/cae/RAEDME.md) | [cae_vit-base-p16_8xb256-fp16-coslr-300e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/cae/cae_vit-base-p16_8xb256-fp16-coslr-300e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/cae/cae_vit-base-p16_16xb256-coslr-300e_in1k-224_20220427-4c786349.pth) \| [log](https://download.openmmlab.com/mmselfsup/cae/cae_vit-base-p16_16xb256-coslr-300e_in1k-224_20220427-4c786349.log.json) |
| [CAE](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/cae/README.md) | [cae_vit-base-p16_8xb256-fp16-coslr-300e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/cae/cae_vit-base-p16_8xb256-fp16-coslr-300e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/cae/cae_vit-base-p16_16xb256-coslr-300e_in1k-224_20220427-4c786349.pth) \| [log](https://download.openmmlab.com/mmselfsup/cae/cae_vit-base-p16_16xb256-coslr-300e_in1k-224_20220427-4c786349.log.json) |
| [MaskFeat](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/maskfeat/README.md) | [maskfeat_vit-base-p16_8xb256-coslr-300e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/maskfeat/maskfeat_vit-base-p16_8xb256-coslr-300e_in1k.py) | [model](https://download.openmmlab.com/mmselfsup/maskfeat/maskfeat_vit-base-p16_8xb256-coslr-300e_in1k_20220913-591d4c4b.pth) \| [log](https://download.openmmlab.com/mmselfsup/maskfeat/maskfeat_vit-base-p16_8xb256-coslr-300e_in1k_20220829_225552.log.json) |

Remarks:

Expand Down Expand Up @@ -63,11 +64,12 @@ If not specified, we use linear evaluation setting from [MoCo](http://openaccess

### ImageNet Fine-tuning

| Algorithm | Config | Remarks | Top-1 (%) |
| --------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------- | --------- |
| MAE | [mae_vit-base-p16_8xb512-coslr-400e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/mae/mae_vit-base-p16_8xb512-coslr-400e_in1k.py) | | 83.1 |
| SimMIM | [simmim_swin-base_16xb128-coslr-100e_in1k-192](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simmim/simmim_swin-base_16xb128-coslr-100e_in1k-192.py) | | 82.9 |
| CAE | [cae_vit-base-p16_8xb256-fp16-coslr-300e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/cae/cae_vit-base-p16_8xb256-fp16-coslr-300e_in1k.py) | | 83.2 |
| Algorithm | Config | Remarks | Top-1 (%) |
| --------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | ------- | --------- |
| MAE | [mae_vit-base-p16_8xb512-coslr-400e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/mae/mae_vit-base-p16_8xb512-coslr-400e_in1k.py) | | 83.1 |
| SimMIM | [simmim_swin-base_16xb128-coslr-100e_in1k-192](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/simmim/simmim_swin-base_16xb128-coslr-100e_in1k-192.py) | | 82.9 |
| CAE | [cae_vit-base-p16_8xb256-fp16-coslr-300e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/selfsup/cae/cae_vit-base-p16_8xb256-fp16-coslr-300e_in1k.py) | | 83.2 |
| MaskFeat | [maskfeat_vit-base-p16_8xb256-fp16-coslr-300e_in1k](https://github.com/open-mmlab/mmselfsup/blob/master/configs/benchmarks/classification/imagenet/maskfeat_vit-base-p16_ft-8xb512-coslr-100e_in1k.py) | | 83.5 |

### COCO17 Object Detection and Instance Segmentation

Expand Down
Loading

0 comments on commit 09b5e29

Please sign in to comment.