forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>
- Loading branch information
Showing
1 changed file
with
329 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,329 @@ | ||
"""Compare the outputs of HF and vLLM when using greedy sampling for Mamba. | ||
This actually is really indentical to test_mamba, so maybe we can reuse | ||
Run `pytest tests/models/decoder_only/language/test_bamba.py`. | ||
""" | ||
import pytest | ||
from transformers import AutoModelForCausalLM, AutoTokenizer | ||
|
||
from vllm.sampling_params import SamplingParams | ||
from vllm.worker.model_runner import _get_graph_batch_size | ||
|
||
from ...utils import check_outputs_equal | ||
|
||
# will be ch | ||
MODELS = ["/workspace/bamba-ckpt",] | ||
|
||
|
||
# Use lower-level interfaces to create this greedy generator, as mamba will | ||
# choke on the model_kwarg 'attention_mask' if hf_model.generate_greedy is used. | ||
def generate_greedy(model_name, example_prompts, max_tokens): | ||
# Create a text generation pipeline | ||
# - in the original test_mamba.py they do not put the model to cuda | ||
# maybe this affects the test. | ||
tokenizer = AutoTokenizer.from_pretrained(model_name) | ||
model = AutoModelForCausalLM.from_pretrained(model_name).to('cuda') | ||
|
||
# Generate texts from the prompts | ||
outputs = [] | ||
for prompt in example_prompts: | ||
# Tokenize the input prompt with truncation | ||
inputs = tokenizer(prompt, return_tensors="pt", truncation=True) | ||
input_ids = inputs["input_ids"].to(model.device) | ||
|
||
# Generate text using the model's generate method directly | ||
generated_ids = model.generate(input_ids, max_new_tokens=max_tokens) | ||
generated_text = tokenizer.decode(generated_ids[0], | ||
skip_special_tokens=True) | ||
|
||
outputs.append((generated_ids[0].tolist(), generated_text)) | ||
|
||
return outputs | ||
|
||
|
||
@pytest.mark.parametrize("model", MODELS) | ||
@pytest.mark.parametrize("dtype", ["float"]) | ||
@pytest.mark.parametrize("max_tokens", [96]) | ||
def test_models( | ||
vllm_runner, | ||
example_prompts, | ||
model: str, | ||
dtype: str, | ||
max_tokens: int, | ||
) -> None: | ||
hf_outputs = generate_greedy(model, example_prompts, max_tokens) | ||
|
||
with vllm_runner(model, dtype=dtype, enforce_eager=True) as vllm_model: | ||
vllm_outputs = vllm_model.generate_greedy(example_prompts, max_tokens) | ||
# This test is for verifying whether the model's extra_repr | ||
# can be printed correctly. | ||
print(vllm_model.model.llm_engine.model_executor.driver_worker. | ||
model_runner.model) | ||
|
||
for i in range(len(example_prompts)): | ||
hf_output_ids, hf_output_str = hf_outputs[i] | ||
vllm_output_ids, vllm_output_str = vllm_outputs[i] | ||
assert hf_output_str == vllm_output_str, ( | ||
f"Test{i}:\nHF: {hf_output_str!r}\nvLLM: {vllm_output_str!r}") | ||
assert hf_output_ids == vllm_output_ids, ( | ||
f"Test{i}:\nHF: {hf_output_ids}\nvLLM: {vllm_output_ids}") | ||
|
||
|
||
@pytest.mark.parametrize("model", MODELS) | ||
@pytest.mark.parametrize("dtype", ["float"]) | ||
@pytest.mark.parametrize("max_tokens", [96]) | ||
def test_batching( | ||
vllm_runner, | ||
example_prompts, | ||
model: str, | ||
dtype: str, | ||
max_tokens: int, | ||
) -> None: | ||
# To pass the small model tests, we need full precision. | ||
for_loop_outputs = [] | ||
with vllm_runner(model, dtype=dtype) as vllm_model: | ||
for prompt in example_prompts: | ||
for_loop_outputs.append( | ||
vllm_model.generate_greedy([prompt], max_tokens)[0]) | ||
|
||
batched_outputs = vllm_model.generate_greedy(example_prompts, | ||
max_tokens) | ||
|
||
check_outputs_equal( | ||
outputs_0_lst=for_loop_outputs, | ||
outputs_1_lst=batched_outputs, | ||
name_0="for_loop_vllm", | ||
name_1="batched_vllm", | ||
) | ||
|
||
|
||
@pytest.mark.parametrize("model", MODELS) | ||
@pytest.mark.parametrize("dtype", ["float"]) | ||
@pytest.mark.parametrize("max_tokens", [10]) | ||
def test_chunked_prefill_with_parallel_sampling(vllm_runner, example_prompts, | ||
model: str, dtype: str, | ||
max_tokens: int) -> None: | ||
# Tests chunked prefill in conjunction with n>1. In this case, prefill is | ||
# populated with decoding tokens and we test that it doesn't fail. | ||
# This test might fail if cache is not allocated correctly for n > 1 | ||
# decoding steps inside a chunked prefill forward pass (where we have both | ||
# prefill and decode together ) | ||
sampling_params = SamplingParams(n=3, | ||
temperature=1, | ||
seed=0, | ||
max_tokens=max_tokens) | ||
with vllm_runner( | ||
model, | ||
dtype=dtype, | ||
enable_chunked_prefill=True, | ||
max_num_batched_tokens=30, | ||
max_num_seqs=10 # forces prefill chunks with decoding | ||
) as vllm_model: | ||
vllm_outputs = vllm_model.generate(example_prompts, sampling_params) | ||
|
||
for i, seqs in enumerate(vllm_outputs): | ||
for j, (_, x) in enumerate(seqs): | ||
print (f"Test {i}, Seq {j}: {x}") | ||
|
||
@pytest.mark.parametrize("model", MODELS) | ||
@pytest.mark.parametrize("dtype", ["float"]) | ||
@pytest.mark.parametrize("max_tokens", [32]) | ||
@pytest.mark.parametrize("chunked_prefill_token_size", [1, 4, 16]) | ||
def test_chunked_prefill(vllm_runner, example_prompts, model: str, dtype: str, | ||
max_tokens: int, | ||
chunked_prefill_token_size: int) -> None: | ||
""" | ||
Checks exact match decode between huggingface model and vllm runner with | ||
chunked prefill. | ||
""" | ||
max_num_seqs = chunked_prefill_token_size | ||
max_num_batched_tokens = chunked_prefill_token_size | ||
|
||
non_chunked = generate_greedy(model, example_prompts, max_tokens) | ||
|
||
with vllm_runner(model, | ||
dtype=dtype, | ||
enable_chunked_prefill=True, | ||
max_num_batched_tokens=max_num_batched_tokens, | ||
max_num_seqs=max_num_seqs) as vllm_model: | ||
chunked = vllm_model.generate_greedy(example_prompts, | ||
max_tokens=max_tokens) | ||
|
||
check_outputs_equal( | ||
outputs_0_lst=chunked, | ||
outputs_1_lst=non_chunked, | ||
name_0="chunked", | ||
name_1="non_chunked", | ||
) | ||
|
||
|
||
@pytest.mark.parametrize("model", MODELS) | ||
@pytest.mark.parametrize("dtype", ["float"]) | ||
@pytest.mark.parametrize("max_tokens", [15]) | ||
def test_parallel_sampling( | ||
vllm_runner, | ||
example_prompts, | ||
model: str, | ||
dtype: str, | ||
max_tokens: int, | ||
) -> None: | ||
|
||
with vllm_runner(model, dtype=dtype) as vllm_model: | ||
for_loop_outputs = [] | ||
for _ in range(10): | ||
for_loop_outputs.append( | ||
# using example_prompts index 1 instead of 0 since with 0 the | ||
# logprobs get really close and the test doesn't pass | ||
vllm_model.generate_greedy([example_prompts[1]], max_tokens) | ||
[0]) | ||
sampling_params = SamplingParams(n=10, | ||
temperature=0.001, | ||
seed=0, | ||
max_tokens=max_tokens) | ||
n_lt_1_outputs = vllm_model.generate([example_prompts[1]], | ||
sampling_params) | ||
token_ids, texts = n_lt_1_outputs[0] | ||
n_lt_1_outputs = [(token_id, text) | ||
for token_id, text in zip(token_ids, texts)] | ||
|
||
check_outputs_equal( | ||
outputs_0_lst=n_lt_1_outputs, | ||
outputs_1_lst=for_loop_outputs, | ||
name_0="vllm_n_lt_1_outputs", | ||
name_1="vllm", | ||
) | ||
|
||
|
||
@pytest.mark.parametrize("model", MODELS) | ||
@pytest.mark.parametrize("dtype", ["bfloat16"]) | ||
@pytest.mark.parametrize("max_tokens", [20]) | ||
def test_mamba_cache_cg_padding( | ||
vllm_runner, | ||
example_prompts, | ||
model: str, | ||
dtype: str, | ||
max_tokens: int, | ||
) -> None: | ||
# This test is for verifying that mamba cache is padded to CG captured | ||
# batch size. If it's not, a torch RuntimeError will be raised because | ||
# tensor dimensions aren't compatible | ||
while len(example_prompts) == _get_graph_batch_size(len(example_prompts)): | ||
example_prompts.append(example_prompts[0]) | ||
|
||
try: | ||
with vllm_runner(model, dtype=dtype) as vllm_model: | ||
vllm_model.generate_greedy(example_prompts, max_tokens) | ||
except RuntimeError: | ||
pytest.fail( | ||
"Couldn't run batch size which is not equal to a Cuda Graph " | ||
"captured batch size. " | ||
"Could be related to mamba cache not padded correctly") | ||
|
||
|
||
@pytest.mark.parametrize("model", MODELS) | ||
@pytest.mark.parametrize("dtype", ["float"]) | ||
@pytest.mark.parametrize("max_tokens", [20]) | ||
def test_models_preemption_recompute( | ||
vllm_runner, | ||
example_prompts, | ||
model: str, | ||
dtype: str, | ||
max_tokens: int, | ||
) -> None: | ||
# Tests that outputs are identical with and w/o preemtions (recompute) | ||
assert dtype == "float" | ||
|
||
with vllm_runner(model, dtype=dtype) as vllm_model: | ||
vllm_model.model.llm_engine.scheduler[ | ||
0].ENABLE_ARTIFICIAL_PREEMPT = True | ||
preempt_vllm_outputs = vllm_model.generate_greedy( | ||
example_prompts, max_tokens) | ||
|
||
vllm_model.model.llm_engine.scheduler[ | ||
0].ENABLE_ARTIFICIAL_PREEMPT = False | ||
vllm_outputs = vllm_model.generate_greedy(example_prompts, max_tokens) | ||
|
||
check_outputs_equal( | ||
outputs_0_lst=preempt_vllm_outputs, | ||
outputs_1_lst=vllm_outputs, | ||
name_0="vllm_preepmtions", | ||
name_1="vllm", | ||
) | ||
|
||
|
||
@pytest.mark.parametrize("model", MODELS) | ||
@pytest.mark.parametrize("dtype", ["float"]) | ||
def test_fail_upon_inc_requests_and_finished_requests_lt_available_blocks( | ||
vllm_runner, | ||
model: str, | ||
dtype: str, | ||
example_prompts, | ||
) -> None: | ||
# This test is for verifying that the Mamba inner state management doesn't | ||
# collapse in case where the number of incoming requests and | ||
# finished_requests_ids is larger than the maximum Mamba block capacity. | ||
# This could generally happen due to the fact that Mamba does support | ||
# statelessness mechanism where it can cleanup new incoming requests in | ||
# a single step. | ||
try: | ||
with vllm_runner(model, dtype=dtype, max_num_seqs=10) as vllm_model: | ||
vllm_model.generate_greedy([example_prompts[0]] * 100, 10) | ||
except ValueError: | ||
pytest.fail("Mamba inner state wasn't cleaned up properly between" | ||
"steps finished requests registered unnecessarily ") | ||
|
||
|
||
@pytest.mark.parametrize("model", MODELS) | ||
@pytest.mark.parametrize("dtype", ["float"]) | ||
def test_state_cleanup( | ||
vllm_runner, | ||
model: str, | ||
dtype: str, | ||
example_prompts, | ||
) -> None: | ||
# This test is for verifying that the Mamba state is cleaned up between | ||
# steps, If its not cleaned, an error would be expected. | ||
try: | ||
with vllm_runner(model, dtype=dtype) as vllm_model: | ||
for _ in range(10): | ||
vllm_model.generate_greedy([example_prompts[0]] * 100, 1) | ||
except ValueError: | ||
pytest.fail("Mamba inner state wasn't cleaned up between states, " | ||
"could be related to finished_requests_ids") | ||
|
||
|
||
@pytest.mark.parametrize("model", MODELS) | ||
@pytest.mark.parametrize("dtype", ["float"]) | ||
def test_multistep( | ||
vllm_runner, | ||
model: str, | ||
dtype: str, | ||
example_prompts, | ||
) -> None: | ||
with vllm_runner(model, num_scheduler_steps=8, | ||
max_num_seqs=2) as vllm_model: | ||
vllm_model.generate_greedy([example_prompts[0]] * 10, 1) | ||
|
||
|
||
@pytest.mark.parametrize("model", MODELS) | ||
@pytest.mark.parametrize("dtype", ["float"]) | ||
@pytest.mark.parametrize("max_tokens", [64]) | ||
def test_multistep_correctness(vllm_runner, model: str, dtype: str, | ||
max_tokens: int, example_prompts) -> None: | ||
with vllm_runner(model, num_scheduler_steps=8, | ||
max_num_seqs=2) as vllm_model: | ||
vllm_outputs_multistep = vllm_model.generate_greedy( | ||
example_prompts, max_tokens) | ||
|
||
with vllm_runner(model, num_scheduler_steps=1, | ||
max_num_seqs=2) as vllm_model: | ||
vllm_outputs_single_step = vllm_model.generate_greedy( | ||
example_prompts, max_tokens) | ||
|
||
check_outputs_equal( | ||
outputs_0_lst=vllm_outputs_multistep, | ||
outputs_1_lst=vllm_outputs_single_step, | ||
name_0="vllm_outputs_multistep", | ||
name_1="vllm_outputs_single_step", | ||
) |