Skip to content

eltonlaw/impyute

Repository files navigation

https://travis-ci.org/eltonlaw/impyute.svg?branch=master

Impyute

Impyute is a library of missing data imputation algorithms. This library was designed to be super lightweight, here's a sneak peak at what impyute can do.

>>> n = 5
>>> arr = np.random.uniform(high=6, size=(n, n))
>>> for _ in range(3):
>>>    arr[np.random.randint(n), np.random.randint(n)] = np.nan
>>> print(arr)
array([[0.25288643, 1.8149261 , 4.79943748, 0.54464834, np.nan],
       [4.44798362, 0.93518716, 3.24430922, 2.50915032, 5.75956805],
       [0.79802036, np.nan, 0.51729349, 5.06533123, 3.70669172],
       [1.30848217, 2.08386584, 2.29894541, np.nan, 3.38661392],
       [2.70989501, 3.13116687, 0.25851597, 4.24064355, 1.99607231]])
>>> import impyute as impy
>>> print(impy.mean(arr))
array([[0.25288643, 1.8149261 , 4.79943748, 0.54464834, 3.7122365],
       [4.44798362, 0.93518716, 3.24430922, 2.50915032, 5.75956805],
       [0.79802036, 1.99128649, 0.51729349, 5.06533123, 3.70669172],
       [1.30848217, 2.08386584, 2.29894541, 3.08994336, 3.38661392],
       [2.70989501, 3.13116687, 0.25851597, 4.24064355, 1.99607231]])

Feature Support

  • Imputation of Cross Sectional Data
    • K-Nearest Neighbours
    • Multivariate Imputation by Chained Equations
    • Expectation Maximization
    • Mean Imputation
    • Mode Imputation
    • Median Imputation
    • Random Imputation
  • Imputation of Time Series Data
    • Last Observation Carried Forward
    • Moving Window
    • Autoregressive Integrated Moving Average (WIP)
  • Diagnostic Tools
    • Loggers
    • Distribution of Null Values
    • Comparison of imputations
    • Little's MCAR Test (WIP)

Versions

Currently tested on 2.7, 3.4, 3.5, 3.6 and 3.7

Installation

To install impyute, run the following:

$ pip install impyute

Or to get the most current version:

$ git clone https://github.com/eltonlaw/impyute
$ cd impyute
$ python setup.py install

Documentation

Documentation is available here: http://impyute.readthedocs.io/

How to Contribute

Check out CONTRIBUTING

About

Data imputations library to preprocess datasets with missing data

Topics

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published